Julia学习笔记:使用GLM包进行一元回归分析及模型拟合度检验

笔记 专栏收录该内容
6 篇文章 0 订阅

前阵儿《定量方法与研究》的课程作业,是对给定的数据进行分析。尽管通常来说,应该使用SPSS操作,不过一来手头没有SPSS可用,二来也想找机会练习一下Julia,于是决定使用Julia作为工具进行数据分析。

大概Julia使用者还是远远不及Python,因此文档并不丰富,而且组织零散。尽管知道自己需要的数据分析功能,Julia及相关包(package)一定可以实现,但具体应该使用哪个包及包内功能却有些无所适从。

隐约记得Julia中与统计相关的包不少,而GLM包是和线性模型有关的。于是到 GitHub(https://github.com/)和 JuliaStats(https://juliastats.org/)搜寻。谁知,虽然看到GLM应该正是所需要的包,但GitHub中GLM包相关的部分却没有给出文档,在文档处无链接。记得以前在GitHub搜寻到Julia相关包的部分,往往都会给出文档可供参考的。

没找到GLM的“官方”文档说明,只好在 Julia Discourse Board(https://discourse.julialang.org/)看看能不能有别的发现。恰好见到有人在使用GLM包中的“lm”函数,好像是可以用来进行一元回归分析并构建模型。于是在Julia的REPL界面使用“@doc lm”查看了一下,果然适用。一定要注意,lm函数传入的用来进行分析的数据参数(第二个参数)必须是DataFrame类型。

为了省事,直接把微信公号图搬来了
(为了省事,直接把微信公号的图搬这儿来了)

这下,一元回归分析及模型可以构建出来了。接下来想对模型的拟合度进行一下检验,需要计算样本决定系数(coefficient of determination,R^2)。网络搜索了一下,介绍样本决定系数的很多,但一下子没有找到在Julia中如何进行计算。于是又到 Julia Discourse Board 搜寻,竟然如此简单,直接使用“r2” 这个函数检验此前回归分析所得到的模型,就可以计算样本决定系数的值了。“r2”这个函数也是在GLM包内的。

至此,数据的线性回归分析、模型的构建以及拟合度检验均告完成。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值