四.数学知识 (代码选自acwing的算法基础课,仅自用)

    • 质数

(1)判断方法

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

(2)分解质因数

void divide(int x)
{
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            int s = 0;
            while (x % i == 0) x /= i, s ++ ;
            cout << i << ' ' << s << endl;
        }
    if (x > 1) cout << x << ' ' << 1 << endl;
    cout << endl;
}

(3)筛质数

朴素筛法 (用质数去筛合数)

primes[] 存质数,可以不存,为了和线性筛法代码统一

st[i] 存 i 是否被判断过,true or false

cnt 质数的个数

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i; // cnt ++ ;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

线性筛法 (用最小的质数去筛合数)

primes[] 存质数,一定要存,存的是 <= i 的所有质数,当 i == primes[j] --> i % primes[j] == 0 (不确定)

st[i] 存 i 是否被判断过,true or false

cnt 质数的个数

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}
    • 约数

(1)判断方法

vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

(2)约数个数

核心思想 一个数N = p1^a1 * p2^a2 * p3^a3 * ...... * pk^ak --> 约数个数 = (a1 + 1) (a2 + 1) (a3 + 1) ...... (ak + 1)

unordered_map<int, int> primes;
    while (n -- )
    {
        int x;
        cin >> x;

        for (int i = 2; i <= x / i; i ++ )
            while (x % i == 0)
            {
                x /= i;
                primes[i] ++ ;
            }

        if (x > 1) primes[x] ++ ;
    }

    LL res = 1;
    for (auto p : primes) res = res * (p.second + 1) % mod;

(3)约数之和

公式 约数之和 = (p1^0 + p1^1 + ...... + p1^a1) * ...... * (pk^0 + pk^1 + ...... + pk^ak)

如何得到 p1^0 + p1^1 + ...... + p1^a1 每次让 t = tp + 1

unordered_map<int, int> primes;
    while (n -- )
    {
        int x;
        cin >> x;

        for (int i = 2; i <= x / i; i ++ )
            while (x % i == 0)
            {
                x /= i;
                primes[i] ++ ;
            }

        if (x > 1) primes[x] ++ ;
    }

    LL res = 1;
    for (auto p : primes)
    {
        LL a = p.first, b = p.second;
        LL t = 1;
        while (b -- ) t = (t * a + 1) % mod;// 得到 p1^0 + p1^1 + ...... + p1^a1
        res = res * t % mod;
    }

(4)最大公约数 (辗转相除法)(欧几里得算法)

//原理暂不理解,如果 d 能整除 a 并且能整除 b --> d | a d | b ==> d | (a + b) ==> d | (ax + bx)

==> 最大公约数 (a, b) == (a, a % b)

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

3.欧拉函数

(1)欧拉函数

phi[n] 表示 1 ~ n 中与 n 互质的数

公式 phi[n] = n * (1 - 1/p1) * (1 - 1/p2) * ... * (1 - 1/pk)

证明:容斥原理

int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);// 转换 为了整除运算 

    return res;
}

(2)筛法求欧拉函数 (线性筛法)(求 1 ~ n 中每个数的欧拉函数之和)

void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}
LL res = 0;
for (int i = 1; i <= n; i ++ ) res += euler[i];

4.快速幂

(1)快速幂

预处理

5 == 101

LL qmi(int a, int b, int p)
{
    LL res = 1 % p;
    while (b)
    {
        if (b & 1) res = res * a % p;
        a = a * (LL)a % p;
        b >>= 1;
    }
    return res;
}

(2)快速幂求逆元

费马定理 --> 如果 b 和 p 互质 b^(p - 1) = 1 (% p) ==> b * b^(p - 2) = 1 (% p)

qmi(a, p - 2, p);

5.扩展欧几里得算法

(1)裴蜀定理

:有一对正整数(a, b),一定有非零整数(x, y),使得 ax + by = gcd(a, b)的倍数 (gcd最大公约数)最小凑出来的是最大公约数

构造 x y 的方法,就是 扩展欧几里得算法

(2)扩展欧几里得算法

推导

通过一组 x, y,求出每组 x, y

int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

(3)线性同余方程 (还是不太会,要再看几次)

推导

int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}
    int x, y;
    int d = exgcd(a, m, x, y);
    if (b % d) puts("impossible");
    else printf("%d\n", (LL)b / d * x % m);

6.中国剩余定理 (懵逼,还是以后再看)

(1)表达整数的奇怪方式

给定一堆两两互质的数 m1 m2 ... mk

M = m1 * m2 * ... * mk

Mi = M / mi

7.高斯消元

(1)高斯消元解线性方程组

未完持续......

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值