题解
题目大意 给你N张卡牌 每次抽出一张 抽出的这张代价为这张的值*左侧的值*右侧的值 问将将卡牌抽的只剩2张的最小代价
使用区间dp求解 d[i][j]表示i到j列卡牌抽的剩2张的最小代价 按照一般套路 枚举区间长度枚举区间起点 再枚举区间间断点k范围[起点+1, 终点-1]
通过中断点进行转移 转移代价为两侧区间代价和+中断点值*左侧区间的左端点值*右侧区间的右端点值 即
d[i][j] = min(d[i][j], d[i][k] + d[k][j] + a[i] * a[k] * a[j])
AC代码
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 110;
int a[MAXN];
int d[MAXN][MAXN]; //i到j的最小值
int main()
{
#ifdef LOCAL
freopen("C:/input.txt", "r", stdin);
#endif
int N;
cin >> N;
for (int i = 1; i <= N; i++)
scanf("%d", &a[i]);
memset(d, 0x3f, sizeof(d));
for (int i = 1; i < N; i++)
d[i][i + 1] = 0; //两张牌代价为0
for (int l = 3; l <= N; l++) //区间长度
for (int i = 1; i + l - 1 <= N; i++) //区间起点
{
int j = i + l - 1; //区间终点
for (int k = i + 1; k < j; k++) //区间分段点
d[i][j] = min(d[i][j], d[i][k] + d[k][j] + a[i] * a[k] * a[j]); //合并代价两边乘中间
}
cout << d[1][N] << endl;
return 0;
}