PAT 列出连通集(dfs+bfs)

使用DFS和BFS遍历无向图并输出连通集
这篇博客介绍了如何利用深度优先搜索(DFS)和广度优先搜索(BFS)在无向图中找到所有的连通集。给定一个图的顶点数和边数,程序首先读取边的信息,然后分别用DFS和BFS从最小顶点开始遍历,输出每个连通集。示例输入和输出展示了具体的图结构和遍历结果。

题目:

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v1v2… vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 100;
int vis[maxn];
int n, m;
int graph[maxn][maxn];


void dfs(int x)
{
	cout << x << " ";
	vis[x] = 1;
	for (int i = 0; i < n; ++i)
	{
		if (vis[i] == 0 && graph[i][x] == 1)
			dfs(i);
	}
}

void bfs(int x)
{
	queue<int>que;
	que.push(x);
	vis[x] = 1;
	while (!que.empty())
	{
		int temp = que.front();
		cout << temp << " ";
		que.pop();
		for (int i = 0; i < n; ++i)
		{
			if (vis[i] == 0 && graph[i][temp] == 1)
			{
				vis[i] = 1;
				que.push(i);
			}
		}
	}
}
int main()
{
	cin >> n >> m;
	for (int i = 0; i < m; ++i)
	{
		int n1, n2;
		cin >> n1 >> n2;
		// 无向图
		graph[n1][n2] = 1;
		graph[n2][n1] = 1;
	}
    //dfs
    for(int i=0;i<n;++i)
    {
        if (!vis[i])
        {
            printf("{ ");
			dfs(i);
            printf("}\n");
        }
    }
	fill(vis, vis + maxn, 0);
	for (int i = 0; i < n; ++i)
	{
		if (!vis[i])
        {
            printf("{ ");
            bfs(i);
            printf("}\n");
        }
	}
	return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值