Description:
Before the invention of book-printing, it was very hard to make a copy of a book. All the contents had to be re-written by hand by so called scribers. The scriber had been given a book and after several months he finished its copy. One of the most famous scribers lived in the 15th century and his name was Xaverius Endricus Remius Ontius Xendrianus (Xerox). Anyway, the work was very annoying and boring. And the only way to speed it up was to hire more scribers.
Once upon a time, there was a theater ensemble that wanted to play famous Antique Tragedies. The scripts of these plays were divided into many books and actors needed more copies of them, of course. So they hired many scribers to make copies of these books. Imagine you have m books (numbered 1, 2 … m) that may have different number of pages (p1, p2 … pm) and you want to make one copy of each of them. Your task is to divide these books among k scribes, k <= m. Each book can be assigned to a single scriber only, and every scriber must get a continuous sequence of books. That means, there exists an increasing succession of numbers 0 = b0 < b1 < b2, … < bk-1 <= bk = m such that i-th scriber gets a sequence of books with numbers between bi-1+1 and bi. The time needed to make a copy of all the books is determined by the scriber who was assigned the most work. Therefore, our goal is to minimize the maximum number of pages assigned to a single scriber. Your task is to find the optimal assignment.
Input:
The input consists of N cases. The first line of the input contains only positive integer N. Then follow the cases. Each case consists of exactly two lines. At the first line, there are two integers m and k, 1 <= k <= m <= 500. At the second line, there are integers p1, p2, … pm separated by spaces. All these values are positive and less than 10000000.
Output
For each case, print exactly one line. The line must contain the input succession p1, p2, … pm divided into exactly k parts such that the maximum sum of a single part should be as small as possible. Use the slash character (’/’) to separate the parts. There must be exactly one space character between any two successive numbers and between the number and the slash.
If there is more than one solution, print the one that minimizes the work assigned to the first scriber, then to the second scriber etc. But each scriber must be assigned at least one book.
Sample Input
2
9 3
100 200 300 400 500 600 700 800 900
5 4
100 100 100 100 100
Sample Output
100 200 300 400 500 / 600 700 / 800 900
100 / 100 / 100 / 100 100
题解:
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 501;
int books[maxn];
int use[maxn];
int num, k; // n本书以及k段
//计算:若最大长度为L的情况下,最后可以切成多少段
int get_counts(int L)
{
int sum = 0;
fill(use, use + maxn, 0); // 有多组数据,每次必须要重新赋初值
int cnt = 1, i = num-1;
while (i >= 0)
{
// 如果大于的话,就必须要在L处进行断开,任何一段的和都要小于L
if (sum + books[i] > L)
{
// 进行标记,需要断开
use[i + 1] = 1;
// 段数+1
cnt++;
// 新的一段
sum = books[i];
}
else
// 如果是小于的话,则仍然属于该段,加起来
sum += books[i];
i--;
}
return cnt;
}
void solve()
{
cin >> num >> k;
int left=0, right=0,mid;
//二分查找的起点为最大的页数,终点为页数之和,要求得的最大值需在这个区间内
for (int i = 0; i < num; ++i)
{
cin >> books[i];
right += books[i];
left = max(books[i], left);
}
//二分查找
while (left < right)
{
mid = (left + right) / 2;
//如果是mid为最大值的话,但是得到的段数若小于等于k,这个时候说明mid太大了
if (get_counts(mid) <= k)
right = mid;
//否则就是mid太小了,段数大于k
else
left = mid + 1;
}
// 求得以right为最大值所能得到的段数
int counts = get_counts(right);
for (int i = 1; i < num && counts < k; ++i)
{
// 多余的段数用在最前面(因为最优解里,前面的工人任务数要最少)
if (!use[i])
{
use[i] = 1;
counts++;
}
}
// 最后遍历,加"/"
for (int i = 0; i < num; i++)
{
cout << books[i]<<" ";
if (use[i + 1])
cout<<"/ ";
}
cout << endl;
}
int main()
{
int N;
cin >> N;
while (N--)
{
solve();
}
return 0;
}