星辰和大海都需要门票,诗和远方也很贵

2015年,一句“世界那么大,我想去看看”的辞职信爆红网络,这句史上最任性辞职理由挑起了无数文艺青年的躁乱和冲动。一时之间,无数人都想逃离眼前的生活,去看看远方的世界。

可事实上,写这句话的老师,在旅游了两个多月,就与心爱之人定居成都,开了一间民宿,一屋、两人、三餐、四季,那个男人,才是她的全世界。
在这里插入图片描述

理想、浪漫、情怀、说走就走……这些词语触动着年轻人们的神经,可是修心和远行,是并存的,你如果没有想明白自己为什么去远方,那你的远行,也不过就是去看看,甚至,你什么都看不到。你走过山时,山不说话;你路过海时,海不说话,你只有走过自己的山海,才能去看见那些地方的古昔。

长大后会发现,星辰和大海都需要门票,诗和远方也很贵。
1
我的一个同事,二十多岁的小姑娘,最近她心情很不好,声音低沉。

因为她又被上司骂了,而这已经是本月的第三次了。她觉得自己只是在被看低之后,想去拼命地做好一件事,可是越想做好,就越容易出错。如今自己很无奈,却又无能为力。

“要不这周末出去玩一下吧,你这是压力太大了而已。”我这句话才说口,就被她拒绝了。

她说自己其实很想出去玩的,上次玩已经是去年年底的事情了,可是却又没有多余的精力出去玩,老板天天催她交报告,周末肯定是要加班的,要不这周的任务又完成不了。努力赚钱在这里安个属于自己的小窝,比什么都重要,生存下来才是首要任务。

这个学生时代的文艺青年,终究被现实磨平了棱角。

2

多少人一到假期就想去远方,可每次都是心已去,人还在。

昨晚刷朋友圈,居然刷到了一个沉寂许久的大学同学小洁的动态,真是活久见,于是就和她聊了起来。

作为一名中学老师,她的工资并不诱人,但是拥有寒暑假这个特殊福利,还是让我非常羡慕。

然而聊得“暑假要去哪里玩”的问题,她却给出了否定的答案。经过她一番诉说,我才知道,这又是一个被生活驱使的伙计。

小洁表示,由于薪资不高,生活成本又逐年上涨,自己得多赚钱才行。别说出去玩了,稍微贵一点的衣服,也得盘算半天才能决定。

至于令人崩溃的一线房价,还是租房一族的她更是一脸迷茫,生活还很苟且,那诗和远方是真消费不起。

3

我们从来都没有去过远方,远方是什么样子?毕业后总幻想一次说走就走的旅行,当毕业真正来临时候,自己却发现租房子都需要爸妈支持,那还有诗的远方啊?

刚实习的时候,拿着可怜的工资,喝杯奶茶都是奢侈。这就是现实。很世俗,一点都不文艺了,这才是生活本来的样子。

我们每个人都向往远方,远方有我们不曾见过的风景和未曾领略的文化,不去观世界不知世界之大,见过世面对一个人很重要。可是我希望,当我们去远方的时候,是明晰和纯粹的。

诗和远方很贵,那就把柴米油盐过出滋味;诗和远方很远,那就赚很多钱去实现。在这个美好又遗憾的世界里,你我皆是自远方而来的独行者。

如果你没办法勇敢面对生活的苟且,那你的远方,也不过是换一个地方苟且。

只有把眼前的苟且努力过成诗一般的生活,你才会渐渐明白和清晰:

自己内心真正期许的远方是何般模样,所有在你苟且里积攒的那一身烟火,都将成为你将来去往远方底气和铠甲。

### 回答1: RNN是循环神经网络(Recurrent Neural Network)的简称。它是一种可以用来处理序列数据的人工神经网络模型。对于古生成任务,RNN可以训练出一个模型,根据输入的头词汇生成相应的古。 在这个问题中,我们给定了一组头词汇:日、红、山、夜、湖、海、月。这些词汇可以作为生成古的起始点。 首先,我需要强调的是,古的生成是一个创造性的过程,因此具体生成的句可能因为模型的不同而有所差异。以下是一个可能的输出示例: 日出东方映大地,红霞满天照远山。 山水交融风景美,夜幕降临湖波寒。 湖光月影共相伴,海面微波送海涵。 月白苍穹伴韵,人轻吟思绪悠。 这是一个简单的示例句,通过RNN模型生成。从头词汇开始,模型根据已有的古训练数据,结合内部的记忆权重,逐字逐句生成句。每个头词汇有多种可能的选择,取决于模型的权重分配生成算法。 总的来说,RNN可以根据给定的头词汇生成古,它通过学习古的结构语言规律,自动生成符合这些规律的句。生成结果可能因为模型的不同而有所差异,但一定程度上能够体现出中国古代词的韵味意境。 ### 回答2: RNN(循环神经网络)是一种能够处理序列数据的机器学习模型,被广泛应用于自然语言处理领域。当用RNN生成古时,需要指定一个头词汇,该头词汇将作为生成句的起点。 根据题目要求的头词汇:“日、红、山、夜、湖、海、月”,我们可以编写一个简单的RNN模型来生成古。以下是一个可能的生成过程: 首先,选择一个头词汇作为起点。例如,我们选择“日”作为头词汇。 接着,将头词汇输入到RNN模型中,模型会根据已有的训练数据学习到的知识进行推测,预测出下一个可能的词汇。 然后,将预测出的词汇作为输入,再次进行预测,生成下一个可能的词汇。 重复上述过程,直至达到所需的生成长度或生成结束条件。 模型会根据已有的训练数据中“日”开始的句,不断生成与之相连贴合的新句。最终生成的古可能如下所示: 日晖红岭辉,山巅夜风吹。 湖波浩无际,海涛翻白花。 月儿当空照,星辰点满霞。 需要注意的是,由于古是一种高度艺术化的文体,仅仅依靠机器生成的古可能会存在词句不通顺、押韵不准确等问题。因此,在生成古时,需要对模型进行准确的训练调参,以提高生成结果的质量。 ### 回答3: RNN是循环神经网络的缩写,它是一种能够处理序列数据的机器学习模型。古生成被广泛应用于文学创作、翻译等领域。对于RNN古生成模型的头词汇,可以选择“日、红、山、夜、湖、海、月”,这些词汇都是具有浓厚文化氛围的,能够在古生成中展现自然景色情感。 以“日”为头词汇的古可以表达太阳的光辉照耀、时间的流转等主题,如“日暖山青,万物生发新光;日出而作,辉煌万里霞光。”可以通过描绘日光的美丽来表达生机勃勃的景象。 以“红”为头词汇的古可以表达多种情感,如喜悦、温暖、热情等,如“红颜随岁月淡去,红尘中寻觅真心;红豆满枝头,芳华不负韶华路。” 以“山”为头词汇的古可以表达山水之间的壮丽景象与自然的亲密关系,如“山青水秀,百鸟齐鸣声;山高水远,夕阳映照林间”。 以“夜”为头词汇的古可以描绘夜晚的寂静与美丽,如“夜幕降临,星空闪烁无尽;夜深人静,月色如银洒满大地”。 以“湖”为头词汇的古可以描绘湖水的宁静湖畔的景色,如“湖泊如镜,碧波荡漾;湖畔烟雨,山影映水”。 以“海”为头词汇的古可以表达浩渺的海洋、壮丽的海浪人类对大海的向往,如“海潮涌动,波涛汹涌天涯;海岛飘香,远方等待航程”。 以“月”为头词汇的古可以表达月色的美丽、情感的绵长思乡之情,如“明月高悬,皎洁如银盘;月下思家,情满心中泛起”。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值