蓝桥杯2023(十四届)省赛——景区导游(最近公共祖先LCA)

景区导游(最近公共祖先)

1.景区导游 - 蓝桥云课 (lanqiao.cn)

本来一开始想用Floyd算法,看看能不能水个分的,但是实际上,居然运行错误呜呜呜呜。

但是实际上和我一开始分析的是一样的,最近公共祖先。但是我看题解上可以使用dfs暴力搜出来,我想试试。

来总结一下这道题的核心:树中两个节点之间的距离=二者到最近公共祖先的距离之和,所以,我们需要知道最近公共祖先是哪个。这里还有一个妙点就是,通过计算当前位置到根节点的位置计算到最近公共祖先的距离。比如a和b的公共祖先是g,他们的根是r,于是就有:agb=ra+rb-2*rg

但是这道题和我之前刷的公共祖先不一样的地方在于,不是用并查集的方法,而是用了一个所谓的 倍增法。二维数组 f 用于存储每个节点的祖先节点信息:f[i][j] 表示节点 i 的第 2^j 个祖先节点。例如,f[i][0] 就是节点 i 的直接父节点,f[i][1] 是节点 i 的祖父节点,f[i][2] 是节点 i 的曾祖父节点,以此类推。

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

//那既然是用dfs的话,恐怕确实是需要存个图,用邻接表?
//我放弃了,我还是用最近公共祖先吧
//
//难点在于如何快速求两点之间的距离。
// 在树状结构中,两点距离 == 两点到达共同祖先LCA的距离之和。我们可以先预处理出各结点到根节点的距离。
// 然后借助LCA算法求两点的LCA,则两点之间的距离 == 两点到根节点的距离之和 - LCA到根节点的距离 * 2;

//这里还用了一个新的东西,跳表法,也就是f[][]。f[i][j]表示节点 i 的第 2^j 个祖先节点
typedef long long LL;
typedef pair<int, int> PII;

const int N = 100010;

vector<PII> g[N];	//实际上是以边的形式存的图
int f[N][23], d[N];
LL dist[N];
int a[N];
int n, k;


void bfs()	//求每个点到根节点的距离
{
	queue<int>q;
	q.push(1);
	d[1] = 1;
	while (!q.empty())
	{
		int cur = q.front();
		q.pop();
		for (auto& nex : g[cur])
		{
			int nexpos = nex.first;
			int val = nex.second;
			if (d[nexpos]!=0)	continue;	//如果已经走过了,直接跳过,防止向上回溯,陷入死循环
			d[nexpos] = d[cur] + 1;	//这里应该是表示层数
			dist[nexpos] = dist[cur] + val;	//这里记录的是nexpos到树顶点的距离
			f[nexpos][0] = cur;	//表示nexpos的直接祖先结点是cur
			for(int k=1;k<=20;k++)	//这里的20表示最高深度不超过20层,20层已经够用了
				f[nexpos][k] = f[f[nexpos][k - 1]][k - 1];
			q.push(nexpos);	//将下一个结点存进去
		}
	}
}


int lca(int x,int y)	//最近公共祖先
{
	if (d[x] > d[y])	//如果x更深
		swap(x, y);	//将深的那方始终置于y
	//使两节点深度相同:
	for (int i = 20; i >= 0; i--)	//从深层往低层遍历
		if (d[f[y][i]] >= d[x])	//如果y的最深的那个祖先(第2^i个祖先)仍然比x层次更深
			y = f[y][i];		//将y直接跳跃到这个祖先来(相当于连续跳了2^i个)
	//现在y的所有祖先的深度都比x浅,说明x,y同深度:
	if (x == y) return x;
	for (int i = 20; i >= 0; i--)	//找公共祖先
		if (f[x][i] != f[y][i])		//遍历当前的所有公共祖先,一旦遇到不相同的,那就向上跳,直到二者祖先完全一致
			x = f[x][i], y = f[y][i];	//同步阀向上遍历
	//现在f[x][i] == f[y][i],说明二者的祖先已经完全一致了,而最近公共祖先就是f[x][0],也就是当前父结点
	return f[x][0];
}

int main()
{
	cin >> n >> k;
	int u, b, v;
	for (int i = 0; i < n - 1; i++)
	{
		cin >> u >> b >> v;
		g[u].push_back({ b,v });
		g[b].push_back({ u,v });
	}


	
	bfs();	//计算各个节点到根节点之间的位置

	for (int i = 1; i <= k; i++)
		cin >> a[i];

	LL res = 0;	//这里计算的是原始路径的长度,之后再减去删除的位置所对应的长度即可
	for (int i = 2; i <= k; i++)
	{
		LL ans = dist[a[i]] + dist[a[i - 1]] - 2 * dist[lca(a[i], a[i - 1])];
		//两点之间距离 = 二者到根节点的距离之和 - 2 * 二者最近公共祖先到根节点的距离之和
		res += ans;
	}
		
	for (int i = 1; i <= k; i++)	//遍历删除的位置
	{
		LL sub = 0;
		//对于开头结尾不走的话,直接减去1~2,k-1~k之间的长度即可
		if (i == 1)	//特殊情况特殊考虑	
			sub = dist[a[1]] + dist[a[2]] - 2 * dist[lca(a[1], a[2])];
		else if (i == k)
			sub = dist[a[k-1]] + dist[a[k]] - 2 * dist[lca(a[k-1], a[k])];
		else  //对于中间节点而言,如果不走的话,比如abc不走b,本来是ab+bc,现在需要减去(ab+bc)然后+ac
		{
			sub += dist[a[i - 1]] + dist[a[i]] - dist[lca(a[i - 1], a[i])] * 2;	//-ab
			sub += dist[a[i]] + dist[a[i + 1]] - dist[lca(a[i], a[i + 1])] * 2;	//-bc
			sub -= dist[a[i - 1]] + dist[a[i + 1]] - dist[lca(a[i - 1], a[i + 1])] * 2;	//+ac
		}
		cout << res - sub << " ";

	}

	return 0;
}

二刷出现的问题:

注意最后一步找公共祖先的时候:

for (int i = 20; i >= 0; i--)	//找公共祖先
		if (f[x][i] != f[y][i])		//遍历当前的所有公共祖先,一旦遇到不相同的,那就向上跳,直到二者祖先完全一致
			x = f[x][i], y = f[y][i];	//同步阀向上遍历

这里的i是需要 >=0 的,因为我们最后返回的最近公共祖先是x,y的父亲节点,所以他们的父亲节点也应该要一样才可以。

三刷:

**一定要开long long,一定要开long long!**思路和之前刷的差不多,可能代码细节上有些区别,大家可以选择自己好理解的方式~

//景区导游
#include <iostream>
#include <queue>
#include <vector>
#include <map>
using namespace std;
#define ll long long
#define PII pair<int,int>
const int N=1e5+3;



ll n,k;
vector<vector<PII> >g(N);
ll f[N][23]={0};
//int book[N]={0};	//其实不需要book来标记,deep可以两用 
ll dist[N]={0};	//表示i结点到 1 的距离 
ll deep[N]={0};
ll plan[N]={0};


void bfs()
{
	queue<ll>q;
	q.push(1);
	deep[1]=1;
	while(!q.empty())
	{
		ll cur=q.front();
		q.pop();
		
		for(auto it:g[cur])
		{
			int nex=it.first;
			int val=it.second;
			if(deep[nex]!=0)	continue;
			dist[nex]=dist[cur]+val;
			f[nex][0]=cur;
			deep[nex]=deep[cur]+1;
			q.push(nex);
			
			for(int i=1;i<=20;i++)	//这里要打满20层,之前1~19层就不行,改到20层就OK了 
				f[nex][i]=f[f[nex][i-1]][i-1];
		}
	}
}




ll lca(ll a,ll b)
{
	if(deep[a]>deep[b])	swap(a,b);	//把深的给b
	for(int i=20;i>=0;i--)
		if(deep[f[b][i]]>=deep[a]) //如果存在b的祖先深度比a的还深,那直接跳
			b=f[b][i];
	//现在a,b持平了
	if(a==b)	return a;
	for(int i=20;i>=0;i--)
		if(f[a][i]!=f[b][i])	//如果从上往下祖先中有不同的,那就跳转 
			 a=f[a][i],b=f[b][i];
	return f[a][0];	//现在他们所有的祖先都相同了,返回他们最近祖先即可 
}


ll getDist(int a,int b)
{
	return dist[a]+dist[b]-2*dist[lca(a,b)];
}

int main()
{
	cin>>n>>k;
	int a,b,v;
	for(int i=1;i<n;i++)
	{
		cin>>a>>b>>v; 
		g[a].push_back({b,v});
		g[b].push_back({a,v});
		
	}
	bfs();
	ll sum=0; 
	for(ll i=0;i<k;i++)
	{
		cin>>plan[i];
		if(i!=0)	sum+=getDist(plan[i-1],plan[i]);
	}
	
	ll ans=0;
	for(ll i=0;i<k;i++)	//依次删除
	{
		if(i==0)
			ans=sum-getDist(plan[0],plan[1]);
		else if(i==k-1)
			ans=sum-getDist(plan[k-2],plan[k-1]);
		else 
			ans=sum-getDist(plan[i-1],plan[i])-getDist(plan[i],plan[i+1])+getDist(plan[i-1],plan[i+1]);
		cout<<ans<<" ";
	} 
	
	return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值