在项目中基于Redis实现的功能汇总

点赞排行榜

基于redis的sortedSet实现的点赞功能,可以做到每个人只能对一个作品点一次赞。并可以基于时间戳进行点赞的先后排序。

以下是代码实现

  • 点赞功能
@Override
    public Result likeBlog(Long id) {
        //1. 获取登录用户
        Long userId = UserHolder.getUser().getId();
        //2. 判断当前用户是否已经点赞
        String key = BLOG_LIKED_KEY + id;
        Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
        if(score == null){
            //3. 如果未点赞,可以点赞
            //3.1  数据库点赞数 +1
            boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
            //3.2  保存到redis集合
            if(isSuccess){
                stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());
            }
        }else{
            //4. 如果已点赞,取消点赞
            //4.1  数据库点赞数 -1
            boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
            //4.2  redis集合删除用户
            if(isSuccess){
                stringRedisTemplate.opsForZSet().remove(key, userId.toString());
            }
        }
        return Result.ok();
    }
  • 统计前五个点赞的用户
 @Override
    public Result queryBlogLikes(Long id) {
        String key = BLOG_LIKED_KEY + id;
        //1. 查询top5的用户
        Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);
        //如果为空传个空集合回去
        if(top5 == null || top5.isEmpty()){
            return Result.ok(Collections.emptyList());
        }
        //2. 解析用户id
        List<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());
        String idsStr = StrUtil.join(",", ids);
        //3. 根据id查询用户
        List<User> userDTOs = userService.query()
                .in("id",ids)
                //这一步很重要!!!!!!!!!
                .last("ORDER BY FIELD(id," + idsStr + ")").list()
                .stream()
                .map(user -> BeanUtil.copyProperties(user, User.class))
                .collect(Collectors.toList());
        //4.返回
        return Result.ok(userDTOs);
    }

这里要注意的是,当获取用户id,从数据库获取用户具体数据时,用到的是 id in (k1,k2,k3) 。mysql默认的语法会忽略k1 k2 k3 的排序,而是自动基于序号进行排序,应该用ORDER BY FIELD指定排序,才能保证top5的顺序准确性。

共同关注

在进行关注操作时,可以通过redis中的set来进行统计,一方面可以保证每个用户只能关注另一个用户一次,另一方面可以方便统计不同用户关注列表之间的交集,也就是俗称的共同关注

  • 关注代码
@Override
    public Result follow(Long followUserId, Boolean isFollow) {
        //获取当前用户id
        Long userId = UserHolder.getUser().getId();
        //1. 判断是关注还是取关
        if(isFollow){
            //2. 关注,新增数据
            Follow follow = new Follow();
            follow.setUserId(userId);
            follow.setFollowUserId(followUserId);
            boolean isSuccess = save(follow);
            if(isSuccess){
                String key = "follows:" + userId;
                stringRedisTemplate.opsForSet().add(key,followUserId.toString());
            }
        }else{
            //3. 取关,删除
            boolean isSuccess = remove(new QueryWrapper<Follow>()
                    .eq("user_id", userId)
                    .eq("follow_user_id", followUserId));
            if(isSuccess){
                String key = "follows:" + userId;
                stringRedisTemplate.opsForSet().remove(key,followUserId.toString());
            }
        }
        return Result.ok();
    }
  • 判断是否关注
@Override
    public Result isfollow(Long followUserId) {
        Long userId = UserHolder.getUser().getId();
        Integer count = query().eq("user_id", userId).eq("follow_user_id", followUserId).count();
        if(count>0){
            return Result.ok(true);
        }else{
            return Result.ok(false);
        }
    }
  • 共同关注
@Override
    public Result followCommons(Long id) {
        //获取当前用户
        Long userId = UserHolder.getUser().getId();

        String key1 = "follows:" + userId;
        String key2 = "follows:" + id;
        //求交集
        Set<String> intersect = stringRedisTemplate.opsForSet().intersect(key1, key2);

        if(intersect == null || intersect.isEmpty()){
            return Result.ok(Collections.emptyList());
        }

        List<Long> ids = intersect.stream().map(Long::valueOf).collect(Collectors.toList());
        List<UserDTO> users = userService.listByIds(ids)
                .stream()
                .map(user -> BeanUtil.copyProperties(user, UserDTO.class))
                .collect(Collectors.toList());
        return Result.ok(users);
    }
}

最后一步用的stream流式编程,我觉得很巧妙

签到统计

利用redis的BITSET进行签到统计,计算出当前是当月的多少钱,再设置对应的位数,即可完成签到功能,在统计连续签到时,只需要从后向前遍历直到遇到0为止

  • 签到功能
@Override
    public Result sign() {
        //获取当前登录的用户
        Long userId = UserHolder.getUser().getId();
        //获取日期
        LocalDateTime now = LocalDateTime.now();
        //拼接key
        String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
        String key = USER_SIGN_KEY + userId + keySuffix;
        //获取天数
        int dayOfMonth = now.getDayOfMonth();
        //写入redis
        stringRedisTemplate.opsForValue().setBit(key, dayOfMonth - 1, true);
        return Result.ok();
    }
  • 签到统计
@Override
    public Result signCount() {
        //获取当前登录的用户
        Long userId = UserHolder.getUser().getId();
        //获取日期
        LocalDateTime now = LocalDateTime.now();
        //拼接key
        String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
        String key = USER_SIGN_KEY + userId + keySuffix;
        //获取天数
        int dayOfMonth = now.getDayOfMonth();
        //获取本月截止今天为止所有的签到记录,返回的是一个十进制数字
        List<Long> result = stringRedisTemplate.opsForValue().bitField(
                    key, BitFieldSubCommands.create()
                        .get(BitFieldSubCommands.BitFieldType.unsigned(dayOfMonth))
                        .valueAt(0)
        );

        //无签到结果
        if(result == null || result.isEmpty()){
            return Result.ok(0);
        }

        Long num = result.get(0);
        if(num == 0 || num == null){
            return Result.ok(0);
        }
        //循环遍历
        int count = 0;
        while(true){
            if ((num & 1) == 0) {
                //如果为0,连续签到断了
                break;
            }else{
                //与1做与运算,得到数字中1的个数
                count++;
            }
            //右移
            num >>>= 1;
        }
        return Result.ok(count);
    }

UV统计

统计独立访问量,用redis的hll来统计100w次访问,只需要消耗不超过16kb的内存,很夸张。

@Test
    void testHyperLogLog() {
        String[] values = new String[1000];
        int j = 0;
        for (int i = 0; i < 1000000; i++) {
            j = i % 1000;
            values[j] = "user_" + i;
            if(j == 999){
                stringRedisTemplate.opsForHyperLogLog().add("hl2", values);
            }
        }
        //统计数量
        Long count = stringRedisTemplate.opsForHyperLogLog().size("hl2");
        System.out.println("count = " + count);
    }

最终消耗了14kb

Feed流

feed流是向用户推送信息的信息流,分为推模式拉模式,和推拉结合模式,依次简述为

  1. 推模式:用户发送博客后推送到每一个粉丝的收件箱
  2. 拉模式:用户发送博客后储存到发件箱,用户看的时候拉取发件箱的内容
  3. 推拉结合:对于活跃粉丝采用推模式保证信息的时效,对于普通粉丝采用拉模式减少成本消耗。

这篇blog只说基于redis的sortedset实现的推模式。

  • 保存博客的同时向所有粉丝推送
@Override
    public Result saveBlog(Blog blog) {
        // 获取登录用户
        UserDTO user = UserHolder.getUser();
        blog.setUserId(user.getId());
        // 保存探店博文
        boolean isSuccess = save(blog);
        if(isSuccess){
            //查询笔记作者的所有粉丝
            List<Follow> follows = followService.query().eq("follow_id", user.getId()).list();
            //推送笔记id给所有粉丝
            for (Follow follow : follows) {
                Long followUserId = follow.getUserId();
                String key = FEED_KEY + followUserId;
                stringRedisTemplate.opsForZSet().add(key, blog.getId().toString(), System.currentTimeMillis());
            }
        }
        // 返回id
        return Result.ok(blog.getId());
    }
  • 用户登录查询收件箱
		//1.获取当前用户
        Long userId = UserHolder.getUser().getId();
        String key = FEED_KEY + userId;
        //2.查询收件箱
        Set<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet()
                .reverseRangeByScoreWithScores(key, 0, max, offset, 2);

        if(typedTuples == null || typedTuples.isEmpty()){
            return Result.ok();
        }

滚动分页查询

滚动分页查询是为了防止在获取页面时,数据刷新导致下标更新,从而在第二页出现了相同的数据。

这里可以利用redis中的zset,根据上一次查询的最小值定义下一次的最大值,并判断最小值出现了几次,定义下一次的偏移量(offset)

		List<Long> ids = new ArrayList<>(typedTuples.size());
        long minTime = 0;
        int os = 1;
        for (ZSetOperations.TypedTuple<String> tuple : typedTuples) {
            ids.add(Long.valueOf(tuple.getValue()));
            long temp = tuple.getScore().longValue();
            if(temp == minTime){
                os++;
            }else{
                minTime = temp;
                os = 1;
            }
        }
        //4.根据id拿到blog
        String idsStr = StrUtil.join(",", ids);
        List<Blog> blogs = query()
                .in("id",ids)
                .last("ORDER BY FIELD(id," + idsStr + ")").list();

        for (Blog blog : blogs) {
            //查询Blog有关的对象
            queryBlogUser(blog);
            //查询blog是否被点赞
            isBlogLiked(blog);
        }

附近店铺

在新版redis中更新了GEO数据类型,可以存储经纬度,并计算出直线距离,基于这点可以实现对附近商铺进行距离远近的排序。

    @Override
    public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
        // 判断是否需要根据坐标查询
        if (x == null || y == null) {
            // 不需要坐标查询,按数据库查询,根据类型分页查询
            Page<Shop> page = query().eq("type_id", typeId).page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
            // 返回数据
            return Result.ok(page.getRecords());
        }
        // 计算分页参数
        int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
        int end = current * SystemConstants.DEFAULT_PAGE_SIZE;
        // 根据坐标查询redis,按照距离排序、分页查询。结果:shopId,maxDistance
        String geoKey = SHOP_GEO_KEY + typeId;
        // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE WITHHASH
        GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo().search(
                geoKey,
                GeoReference.fromCoordinate(x, y),  // 查询以给定的经纬度为中心的圆形区域
                new Distance(10000),    // 查询10km范围内的店铺,单位默认为米
                RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end)   // 分页查询0~end条
        );
        // 解析出id
        if (results == null) {
            // 未查到结果,返回错误
            return Result.fail("没有查到店铺");
        }
        List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
        // from跳过前面元素不足from个,跳过后集合为空,说明查完了没有下一页了,返回空集合
        if (list.size() <= from) {
            return Result.ok(Collections.emptyList());
        }
        // 截取from ~ end的部分,方法一:list.subList(from, end); 方法二:stream流的skip方法,跳过from前面的元素,从from开始,截取end-from个元素
        List<Long> ids = new ArrayList<>(list.size());
        Map<String, Distance> distanceMap = new HashMap<>(list.size());
        list.stream().skip(from).forEach(result -> {
            // 获取店铺id(Member)
            String shopIdStr = result.getContent().getName();
            ids.add(Long.valueOf(shopIdStr));
            // 获取距离
            Distance distance = result.getDistance();
            distanceMap.put(shopIdStr, distance);
        });
        // 根据id查询店铺数据
        String idStr = StrUtil.join(",", ids);
        List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();
        // 遍历店铺数据,设置距离
        for (Shop shop : shops) {
            shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
        }
        return Result.ok(shops);
    }

以上仅代表个人拙见,如有不足请在评论区指出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值