[C++][算法基础]贪心应用问题合集

1. 合并果子(贪心 + Huffman树)

在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。

达达决定把所有的果子合成一堆。

每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。

可以看出,所有的果子经过 𝑛−1 次合并之后,就只剩下一堆了。

达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。

假定每个果子重量都为 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。

例如有 3 种果子,数目依次为 1,2,9。

可以先将 1、2 堆合并,新堆数目为 3,耗费体力为 3。

接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12,耗费体力为 12。

所以达达总共耗费体力=3+12=15。

可以证明 15 为最小的体力耗费值。

输入格式

输入包括两行,第一行是一个整数 𝑛,表示果子的种类数。

第二行包含 𝑛 个整数,用空格分隔,第 𝑖 个整数 ai𝑎𝑖 是第 𝑖 种果子的数目。

输出格式

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。

输入数据保证这个值小于 231。

数据范围

1≤𝑛≤10000,
1≤𝑎𝑖≤20000

输入样例:
3 
1 2 9 
输出样例:
15

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;

const int N = 10010;
int n;
int p[N];
priority_queue <int, vector<int>, greater<int>> Q;

int main(){
    cin>>n;
    for(int i = 0;i < n;i ++){
        cin>>p[i];
        Q.push(p[i]);
    }
    int sum = 0;
    while(Q.size() > 1){
        int a = Q.top();
        Q.pop();
        int b = Q.top();
        Q.pop();
        sum += a + b;
        Q.push(a + b);
    }
    cout<<sum<<endl;
    return 0;
}

 2. 排队打水(贪心 + 排序不等式)

在一条数轴上有 𝑁 家商店,它们的坐标分别为 A_{1}A_{N}

现在需要在数轴上建立一家货仓,每天清晨,从货仓到每家商店都要运送一车商品。

为了提高效率,求把货仓建在何处,可以使得货仓到每家商店的距离之和最小。

输入格式

第一行输入整数 𝑁。

第二行 𝑁 个整数 A_{1}A_{N}

输出格式

输出一个整数,表示距离之和的最小值。

数据范围

1≤𝑁≤100000,
0≤𝐴𝑖≤40000

输入样例:
4
6 2 9 1
输出样例:
12

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int N = 100010;
int n,a;
vector <int> p;

int main(){
    cin>>n;
    for(int i = 0;i < n;i ++){
        cin>>a;
        p.push_back(a);
    }
    long long num = p.size();
    sort(p.begin(),p.end());
    long long res = 0;
    num--;
    for(int i = 0;i < n;i ++){
        res = (long long)res + p[i] * num;
        num--;
    }
    cout<<res<<endl;
    return 0;
}

3. 货仓选址(贪心 + 绝对值不等式)

在一条数轴上有 𝑁 家商店,它们的坐标分别为 A_{1}A_{N}

现在需要在数轴上建立一家货仓,每天清晨,从货仓到每家商店都要运送一车商品。

为了提高效率,求把货仓建在何处,可以使得货仓到每家商店的距离之和最小。

输入格式

第一行输入整数 𝑁。

第二行 𝑁 个整数 A_{1}A_{N}

输出格式

输出一个整数,表示距离之和的最小值。

数据范围

1≤𝑁≤100000,
0≤𝐴𝑖≤40000

输入样例:
4
6 2 9 1
输出样例:
12

代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;

int n,a;
const int N = 100010;
vector<int> p;

int main(){
    cin>>n;
    for(int i = 0;i < n;i ++){
        cin>>a;
        p.push_back(a);
    }
    int res = 0;
    sort(p.begin(), p.end());
    for(int i = 0;i < n;i ++){
        res += fabs(p[i] - p[n / 2]);
    }
    cout<<res<<endl;
    return 0;
}

 4. 耍杂技的牛(贪心 + 变量公式推理)

农民约翰的 𝑁 头奶牛(编号为 1..𝑁)计划逃跑并加入马戏团,为此它们决定练习表演杂技。

奶牛们不是非常有创意,只提出了一个杂技表演:

叠罗汉,表演时,奶牛们站在彼此的身上,形成一个高高的垂直堆叠。

奶牛们正在试图找到自己在这个堆叠中应该所处的位置顺序。

这 𝑁 头奶牛中的每一头都有着自己的重量 𝑊𝑖 以及自己的强壮程度 𝑆𝑖。

一头牛支撑不住的可能性取决于它头上所有牛的总重量(不包括它自己)减去它的身体强壮程度的值,现在称该数值为风险值,风险值越大,这只牛撑不住的可能性越高。

您的任务是确定奶牛的排序,使得所有奶牛的风险值中的最大值尽可能的小。

输入格式

第一行输入整数 𝑁,表示奶牛数量。

接下来 𝑁 行,每行输入两个整数,表示牛的重量和强壮程度,第 𝑖 行表示第 𝑖 头牛的重量 𝑊𝑖 以及它的强壮程度 𝑆𝑖。

输出格式

输出一个整数,表示最大风险值的最小可能值。

数据范围

1≤𝑁≤50000,
1≤𝑊𝑖≤10,000,
1≤𝑆𝑖≤1,000,000,000

输入样例:
3
10 3
2 5
3 3
输出样例:
2

代码: 

#include<iostream>
#include<algorithm>
#include<cstring>
#include<climits> 
using namespace std;

const int N = 50010;
int n, w, s;
vector<pair<int,int>> Cow;   //{w + s, w}

int main(){
    cin>>n;
    for(int i = 0;i < n;i ++){
        cin>>w>>s;
        Cow.push_back({w + s, w});
    }
    sort(Cow.begin(), Cow.end());
    int res = INT_MIN;
    int sum = 0;
    for(auto tmp : Cow){
        int weight = tmp.second;
        int contain = tmp.first - tmp.second;
        res = max(res, sum - contain);
        sum += weight;
    }
    cout<<res<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值