1. 合并果子(贪心 + Huffman树)
在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。
达达决定把所有的果子合成一堆。
每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。
可以看出,所有的果子经过 𝑛−1 次合并之后,就只剩下一堆了。
达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。
假定每个果子重量都为 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。
例如有 3 种果子,数目依次为 1,2,9。
可以先将 1、2 堆合并,新堆数目为 3,耗费体力为 3。
接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12,耗费体力为 12。
所以达达总共耗费体力=3+12=15。
可以证明 15 为最小的体力耗费值。
输入格式
输入包括两行,第一行是一个整数 𝑛,表示果子的种类数。
第二行包含 𝑛 个整数,用空格分隔,第 𝑖 个整数 ai𝑎𝑖 是第 𝑖 种果子的数目。
输出格式
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。
输入数据保证这个值小于 231。
数据范围
1≤𝑛≤10000,
1≤𝑎𝑖≤20000
输入样例:
3
1 2 9
输出样例:
15
代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 10010;
int n;
int p[N];
priority_queue <int, vector<int>, greater<int>> Q;
int main(){
cin>>n;
for(int i = 0;i < n;i ++){
cin>>p[i];
Q.push(p[i]);
}
int sum = 0;
while(Q.size() > 1){
int a = Q.top();
Q.pop();
int b = Q.top();
Q.pop();
sum += a + b;
Q.push(a + b);
}
cout<<sum<<endl;
return 0;
}
2. 排队打水(贪心 + 排序不等式)
在一条数轴上有 𝑁 家商店,它们的坐标分别为 ∼。
现在需要在数轴上建立一家货仓,每天清晨,从货仓到每家商店都要运送一车商品。
为了提高效率,求把货仓建在何处,可以使得货仓到每家商店的距离之和最小。
输入格式
第一行输入整数 𝑁。
第二行 𝑁 个整数 ∼。
输出格式
输出一个整数,表示距离之和的最小值。
数据范围
1≤𝑁≤100000,
0≤𝐴𝑖≤40000
输入样例:
4
6 2 9 1
输出样例:
12
代码:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100010;
int n,a;
vector <int> p;
int main(){
cin>>n;
for(int i = 0;i < n;i ++){
cin>>a;
p.push_back(a);
}
long long num = p.size();
sort(p.begin(),p.end());
long long res = 0;
num--;
for(int i = 0;i < n;i ++){
res = (long long)res + p[i] * num;
num--;
}
cout<<res<<endl;
return 0;
}
3. 货仓选址(贪心 + 绝对值不等式)
在一条数轴上有 𝑁 家商店,它们的坐标分别为 ∼。
现在需要在数轴上建立一家货仓,每天清晨,从货仓到每家商店都要运送一车商品。
为了提高效率,求把货仓建在何处,可以使得货仓到每家商店的距离之和最小。
输入格式
第一行输入整数 𝑁。
第二行 𝑁 个整数 ∼。
输出格式
输出一个整数,表示距离之和的最小值。
数据范围
1≤𝑁≤100000,
0≤𝐴𝑖≤40000
输入样例:
4
6 2 9 1
输出样例:
12
代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n,a;
const int N = 100010;
vector<int> p;
int main(){
cin>>n;
for(int i = 0;i < n;i ++){
cin>>a;
p.push_back(a);
}
int res = 0;
sort(p.begin(), p.end());
for(int i = 0;i < n;i ++){
res += fabs(p[i] - p[n / 2]);
}
cout<<res<<endl;
return 0;
}
4. 耍杂技的牛(贪心 + 变量公式推理)
农民约翰的 𝑁 头奶牛(编号为 1..𝑁)计划逃跑并加入马戏团,为此它们决定练习表演杂技。
奶牛们不是非常有创意,只提出了一个杂技表演:
叠罗汉,表演时,奶牛们站在彼此的身上,形成一个高高的垂直堆叠。
奶牛们正在试图找到自己在这个堆叠中应该所处的位置顺序。
这 𝑁 头奶牛中的每一头都有着自己的重量 𝑊𝑖 以及自己的强壮程度 𝑆𝑖。
一头牛支撑不住的可能性取决于它头上所有牛的总重量(不包括它自己)减去它的身体强壮程度的值,现在称该数值为风险值,风险值越大,这只牛撑不住的可能性越高。
您的任务是确定奶牛的排序,使得所有奶牛的风险值中的最大值尽可能的小。
输入格式
第一行输入整数 𝑁,表示奶牛数量。
接下来 𝑁 行,每行输入两个整数,表示牛的重量和强壮程度,第 𝑖 行表示第 𝑖 头牛的重量 𝑊𝑖 以及它的强壮程度 𝑆𝑖。
输出格式
输出一个整数,表示最大风险值的最小可能值。
数据范围
1≤𝑁≤50000,
1≤𝑊𝑖≤10,000,
1≤𝑆𝑖≤1,000,000,000
输入样例:
3
10 3
2 5
3 3
输出样例:
2
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<climits>
using namespace std;
const int N = 50010;
int n, w, s;
vector<pair<int,int>> Cow; //{w + s, w}
int main(){
cin>>n;
for(int i = 0;i < n;i ++){
cin>>w>>s;
Cow.push_back({w + s, w});
}
sort(Cow.begin(), Cow.end());
int res = INT_MIN;
int sum = 0;
for(auto tmp : Cow){
int weight = tmp.second;
int contain = tmp.first - tmp.second;
res = max(res, sum - contain);
sum += weight;
}
cout<<res<<endl;
return 0;
}