1.服务器连接
连接服务器默认用户:ssh -p 端口号 用户@ip
登录root用户:sudo -i
添加用户 :adduser 用户名
进入用户 :su - ccendoc
2. 安装anaconda
下载anaconda:wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh
安装anaconda:bash Anaconda3-2023.03-Linux-x86_64.sh
打开配置文件,查看环境变量:vim ~/.bashrc,在最后一行加上export PATH=$PATH:/home/ccendoc/anaconda3/bin
生效环境配置:source ~/.bashrc
检查是否安装成功:conda list
查看环境:conda env list
新建虚拟环境:conda create -n deeplearning(环境名) python=3.8 #python版本3.8
切换cuda版本:
export PATH=/usr/local/cuda-10.1/bin:${PATH}
export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64:${LD_LIBRARY_PATH}
生效环境配置:source ~/.bashrc
切换环境:conda activate deeplearning
(退出环境:conda deactivate)
查看cuda版本:nvcc -V
3.导入相关包
(1) 查看已安装包
pip list #查看安装包
python --version #查看Python版本
(2) Pytorch
安装Pytorch 去Pytorch官网找对应cuda版本的安装命令 conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
(3)ignite
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pytorch-ignite==0.1.2(最好指定版本,否则容易版本太高报错)
(4) yaml
yaml #pip install pyyaml
(5) scipy
scipy #pip install scipy
(6)sklearn
sklearn #pip install scikit-learn
(7)yacs
yacs #pip install yacs
(8)cv2
cv2 #pip install opencv-python
其他命令
删除文件 :rm 文件名
终止:ctrl+c
查看GPU:gpustat(pip install gpustat)
nvidia-smi
清屏:clear
进入某一个目录:cd 目录名 (返回上一级目录:cd ..)
查看当前路径:pwd
查看当前路径下文件:ls
查看当前路径下文件及权限:ls -l
删除文件:rm -rf 文件名
给自己的文件设置权限:
1.先切换到有权登录root用户的默认用户:su a431(默认用户)
2.切断到root用户:sudo -i
3.利用cd ..和cd 文件夹切换到用户所在home目录中
4.查看自己文件夹的权限 ls -l
5.利用root用户更改自己的权限chmod 700 ccendoc(用户文件夹名称)
6.切断到默认用户:su a431(默认用户)
7.切断到自己用户:su ccendoc