一、介绍
傅里叶变换分解一个信号,转化为该信号的正弦和余弦分量,并将时间序列从时域转换为频域,“将信号以频率(frequencies)形式呈现”。
傅里叶变换是对信号进行处理加工,原本只包含时域信息而不包含频率信息,通过傅里叶变换能够得到频率信息。
- 频率的单位是赫兹,表示每秒循环次数
- 变换快,频率高
- 变换慢,频率低
类别 | 公式 | 解释 |
---|---|---|
傅里叶变换公式(连续) | F ( ω ) = ∫ − ∞ ∞ f ( t ) e − j ω t d t F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt F(ω)=∫−∞∞f(t)e−jωtdt | ω \omega ω表示频率 |
傅里叶逆变换公式(连续) | f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega f(t)=2π1∫−∞∞F(ω)ejωtdω | t t t表示时间 |
离散傅里叶变换(DFT) | X [ k ] = ∑ n = 0 N − 1 f [ n ] e − j 2 π N k n X[k] = \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi}{N} kn} X[k]=n=0∑N−1f[n]e−jN2πkn | |
逆离散傅里叶变换(IDFT) | f [ n ] = 1 N ∑ k = 0 N − 1 X [ k ] e j 2 π N k n f[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N} kn} f[n]=N1k=0∑N−1X[k]ejN2πkn |
所以:积分符号 ∫ 、求和符号 ∑ 对应着:连续、离散,本质都是一个意思,都是做加法。
看一个应用实例
再看一个应用实例
但是这个实例没能提供完整的信息,比如,“该时间序列从什么时候改变了频率”等。为了克服这些问题,人们开始利用窗口傅里叶变换(Windowed Fourier transform)和短时傅里叶变换(short-time Fourier transform)
短时傅里叶变换面临的问题是:需要选择窗口的大小,需要解释为什么选择这样尺寸的窗口等等。
而这,就给我们带来的了一个概念:小波分析。
- ① 具体实例:
如果我们的信号是一个非常良好(良好应该是说振幅频率都是平稳的)的正弦和一个超短时(1/511秒,只有把横轴也设置为500多个时刻才能看得见)的指数函数组合而成。执行傅里叶变换,会怎么样呢?
傅里叶变换只识别出来一个峰(峰在横轴上的位置代表该正弦函数的频率,4赫兹),会完全丢失那个突然出现快速消失的信号。
在地震和心电图等实际应用当中,这种突然出现并且快速消失的信号(e.g.心跳不规则)可能是至关重要的,不应该丢失。
那如果是小波变换处理相同的信号呢??
所执行的是连续小波变换–paul wavelet
得到一个牛油果绿色图,就是的“小波尺度图”
[7,1]随着octave增大,只能观察到sin函数
[2,1]随着octave减小,能观察到在横轴0.3附近发生了某个事件,并且持续一定的时间。
小波分析本质上是使用小波函数对一个信号进行分解,最终你得到一系列系数。
psi ψ 小波函数 --> Detail coefficients
phi Φ 缩放函数 --> Coarse coefficients
下图中的树形结构就是多分辨率分析。
看一个实例——连续小波变换
一些时&频解决方案:
在进行任何类型的时间序列分析时,我们应该问的一些基本问题是,你想在信号中寻找什么样的特征,以及分析的目的是什么?如果您只对信号中的频率成分感兴趣,那么傅立叶变换在大多数情况下都能胜任。相反,如果你感兴趣的是信号中存在的特定特征,以及信号的振幅和持续时间,那么像小波变换这样的方法将是你的不二之选。
1. 对时序进行频率侦测
单一频率(平稳时间序列)
信号是:某种频率的余弦函数
所执行的是:
6阶Gabor Wavelet
octave = 8
voice = 4
能够通过移动进度条探查导信号中的高频或低频成分
两个频率
信号是:两个不同频率的余弦函数
所执行的是:
6阶Gabor Wavelet
octave = 8
voice = 4
取决于这两者频率如何结合,两个黄色色带也能合并成一条——调幅(AM)。