深度学习环境的导出和配置

导出Python环境

使用win+r,然后输入cmd,进入命令行窗口,定位到一个保存文件的位置,然后输入如下指令即可将当前的Python环境保存为配置文件。如若需要导出虚拟环境的配置,则需要先进入虚拟环境,进行以上的操作。

conda env export --no-builds > ./environment.yaml

检查 YAML 文件

假设通过 conda env export --no-builds 生成的 environment.yaml 内容如下:

dependencies:
  - python=3.8.12
  - numpy=1.21.2
  - pip:
    - scikit-learn==0.24.2
    - tensorflow==2.8.0
    - custom-package==0.1.0
  • pip 子字段:表示 pip 安装的包及版本。

如果 pip 包已完整记录在 environment.yml 文件中,那么直接在另一台机器上使用 conda env create -f environment.yml 时,会自动安装这些 pip 包。

可以单独导出 pip 包作为备用

pip freeze > requirements.txt

conda env export 和 conda env export --no-builds 对比

特性conda env exportconda env export --no-builds
导出的信息包含版本号和构建信息仅包含版本号
文件兼容性可能对不同平台不兼容跨平台兼容性更高
适用场景精确复现环境(同系统和架构)更灵活的环境复现(跨平台/架构)
导出的文件复杂度信息较多,文件更长信息更少,文件更短

选择哪种方式取决于你的需求:

  • 如果需要完全一致的环境(相同平台、架构):使用 conda env export
  • 如果需要更高的灵活性(跨平台、不同操作系统):使用 conda env export --no-builds

快速配置环境

拿到上面保存的文件之后,同样在命令行窗口中进入文件保存的位置,然后启动需要配置的环境,在命令行中输入如下指令:

conda env create -f ./environment.yaml -n new_env_name

参考资料

[1] conda env export

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值