导出Python环境
使用win+r,然后输入cmd,进入命令行窗口,定位到一个保存文件的位置,然后输入如下指令即可将当前的Python环境保存为配置文件。如若需要导出虚拟环境的配置,则需要先进入虚拟环境,进行以上的操作。
conda env export --no-builds > ./environment.yaml
检查 YAML 文件
假设通过 conda env export --no-builds
生成的 environment.yaml
内容如下:
dependencies:
- python=3.8.12
- numpy=1.21.2
- pip:
- scikit-learn==0.24.2
- tensorflow==2.8.0
- custom-package==0.1.0
pip
子字段:表示 pip 安装的包及版本。
如果 pip
包已完整记录在 environment.yml
文件中,那么直接在另一台机器上使用 conda env create -f environment.yml
时,会自动安装这些 pip 包。
可以单独导出 pip 包作为备用
pip freeze > requirements.txt
conda env export 和 conda env export --no-builds 对比
特性 | conda env export | conda env export --no-builds |
---|---|---|
导出的信息 | 包含版本号和构建信息 | 仅包含版本号 |
文件兼容性 | 可能对不同平台不兼容 | 跨平台兼容性更高 |
适用场景 | 精确复现环境(同系统和架构) | 更灵活的环境复现(跨平台/架构) |
导出的文件复杂度 | 信息较多,文件更长 | 信息更少,文件更短 |
选择哪种方式取决于你的需求:
- 如果需要完全一致的环境(相同平台、架构):使用
conda env export
。 - 如果需要更高的灵活性(跨平台、不同操作系统):使用
conda env export --no-builds
。
快速配置环境
拿到上面保存的文件之后,同样在命令行窗口中进入文件保存的位置,然后启动需要配置的环境,在命令行中输入如下指令:
conda env create -f ./environment.yaml -n new_env_name
参考资料
[1] conda env export