【OpenCV • c++】图像平滑处理(1) —— 方框滤波 | 盒滤波

本文介绍了图像平滑处理的重要性,特别是方框滤波在减少图像噪点和失真中的应用。文章详细阐述了图像滤波的目的,并探讨了邻域算子和线性邻域滤波的概念。在OpenCV中,通过方框滤波函数进行图像处理,参数包括输入图像、输出图像、内核大小等。作者提供了代码演示,并分享了个人在CSDN的计算机视觉专栏。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、平滑处理

  平滑处理也称为模糊处理,是一种简单且使用频率很高的图像处理方法,平滑处理的用途有很多,最常见的是用来减少图像上的噪点或者失真。在涉及到降低图像分辨率时,平滑处理是非常好用的方法。

二、图像滤波

  图像滤波指的是在尽量保留图像细节特征的条件下对图像的噪音进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将会直接影响到后续图像处理和分析的有效性和可靠性。消除图像中的噪声成分叫做图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频或中频段,而在高频段,有用的信息经常会被噪声淹没,因此一个能降低高频成分幅度的滤波器就能减弱噪声的影响。
  图像滤波有两个目的: 一是抽出对象的特征作为图像识别的特征模式;另一个是为了适应图像处理的要求,消除图像数字化时所混入的噪声。
  对滤波处理的两个要求:一是不能损坏图像边缘及轮廓等重要信息;二是使得图像清晰视觉效果好。

三、邻域算子与线性邻域滤波

  邻域算子是利用给定像素周围的像素值来决定此像素的最终输出值的一种算子。线性邻域滤波就是一种常用的邻域算子,像素的输出值取决于输入像素的加权和。邻域算子除了用于局部色调调整之外,还可以用于图像滤波,实现图像的平滑和锐化,图像边缘增强或图像噪声的去除。线性邻域算子就是用

评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

锡兰_CC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值