依据之前写过的代码,我设计了两个迷宫,一个是最简单的直线,另一个是稍复杂的曲线。结果演示如下:
https://www.bilibili.com/video/av19519131/?from=search&seid=216891970615103945
可以发现,遗传算法可以保留所有子代中最优的一代,但是要想得到更优的个体只能靠变异这个过程,而变异出来的个体结果其实大部分都是较差的。所以在这种神经网络的优化中,由于具有很多的参数,而且参数的敏感性未知,可能要考虑到增加变异的概率和数量。
依据之前写过的代码,我设计了两个迷宫,一个是最简单的直线,另一个是稍复杂的曲线。结果演示如下:
https://www.bilibili.com/video/av19519131/?from=search&seid=216891970615103945
可以发现,遗传算法可以保留所有子代中最优的一代,但是要想得到更优的个体只能靠变异这个过程,而变异出来的个体结果其实大部分都是较差的。所以在这种神经网络的优化中,由于具有很多的参数,而且参数的敏感性未知,可能要考虑到增加变异的概率和数量。