【HDU 5729】Rigid Frameworks(组合数学+DP)

【HDU 5729】Rigid Frameworks(组合数学+DP)

Rigid Frameworks

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 249    Accepted Submission(s): 200

Problem Description
Erik Demaine is a Professor in Computer Science at the Massachusetts Institute of Technology. Demaine’s research interests range throughout algorithms, from data structures for improving web searches to the geometry of understanding how proteins fold to the computational difficulty of playing games.

Maid xiaodao is learning theoretical computer science in her spare time, and recently she was fascinated by Professor Erik Demaine’s Geometric Folding Algorithms - Linkages, Origami, Polyhedra. The following problem was inspired by this book.

Recall that a graph is a collection of vertices and edges connecting the vertices, and that two vertices connected by an edge are called adjacent. Graphs can be embedded in Euclidean space by associating each vertex with a point in the Euclidean space.

⋅ A flexible graph is an embedding of a graph where it is possible to move one or more vertices continuously so that the distance between at least two nonadjacent vertices is altered while the distances between each pair of adjacent vertices is kept constant.

⋅ A rigid graph is an embedding of a graph which is not flexible. Informally, a graph is rigid if by replacing the vertices with fully rotating hinges and the edges with rods that are unbending and inelastic, no parts of the graph can be moved independently from the rest of the graph.


Sit down and relax, to simplify the problem, let’s only consider the planar graphs as grids. The grid graphs embedded in the Euclidean plane are not rigid, as the following animation demonstrates:


However, one can make them rigid by adding diagonal edges to the cells. For example, the following picture shows a 2 × 3 grid graph.


Note that you can add at most one orientation of a diagonal edge in one single cell. In fact, there are 448 ways to make a 2 × 3 grid graph rigid. And now we want to know, how many different rigid m × n grid graph with diagonal edges in total? Dear contestant, could you please find it out?

Input
There are multiple test cases. For each test case, the first line contains two integer m and n (1m,n10) represented the size of the grid graph.

Output
For each test case, output one integer number in a single line — the number of different rigid m × n grid graph with diagonal edges. The answer could be very large, output it modulo 1000000007(109+7) .

Sample Input
1 2
3 2
7 9
10 10

Sample Output
4
448
357533852
935300639

Author
HIT

Source
2016 Multi-University Training Contest 1

通过这题学习了几个简单的n点连通图计数的求法。主要都是理解好DP数组
题目大意:
这题题意也挺恶心。。给出一个n*m的格子阵,可以给每个格子主对角线或者副对角线添加线段,已知包括原有的所有线段的长度不可改变,问多少种加法可以让图稳定。
稳定的定义是无法改变形状,因为有线段长度不可变这一限制,所以添加某些线段后可以达到稳定,那么什么样的方案是稳定的呢?
——
——
——
——
——
——
——

——
——
——
——

——
——
——
——

——
——
——
——

——
——
——
——
——
——
——

这样考虑:
当第 i 行某个格子某对角线加上一条线段时,这一行中所有格子的竖边不会发生倾斜!或者说不会左右倾倒,只会出现上下移动

无法发生| | | | | -> / / / / /或者 -> \ \ \ \ \的情况
但可能有| | | | | -> | | |
| |的情况(=。=搞得有点抽象 大体明白我想表述的意思就好。。)

同样的,当第j列某个格子某对角线加上一条线段时,这一列中所有格子的横向边不会发生倾斜!或者说不会上下倾倒,只会出现左右倾斜

换言之,要保证任意一个格子不会扭曲,就要保证对于每一个格子,所在的行和列都至少有一个格子填上了正/副对角线

再转换一下,就变成了求n*m的二分图的连通图的个数。

通过这题发现一个好PPT
顾昱洲顾大犇的一篇,具体不贴了 名字是Graphical Enumeration

学了两个入门的
1·求n个点的有标号DAG的个数。
2·求n个点的有标号无向图的个数。
3·本题 n*m的二分图的连通图个数

1·求n个点的有标号DAG的个数。
定义 dp[n][m] 为n个点中有m个点入度为0的方案数。
此时有n-m个入度非0的点。

这样求 dp[n][m] 时可从 dp[nm][k] 转移 即预留m个入读0的节点。
同时m个点向其余k个入度为0的点随意连接(但要保证有连接 因为要把这k个点变为入度非0的点) 同时m个点向n-m-k个点随意连接(可以不连,因为本就是入度非0)
无重复证明:为什么这样不会有重复计算呢?因为 dp[n][m] k=1nmdp[nm][k] 转移得到。
dp[nm][k] 的含义是预留m个入度0的点,首先保证了这部分不会重复,其次 dp[nm][k] 是之前处理出来的状态,需要保证不重复,那么现在假设 k=1nmdp[nm][k] 这些状态都不重复,那么只要证明 dp[n][m] 由他们转移来的时候也没有重复,就可以保证转移方程合法!

首先 Cmn 选出m个入度0的点集,不重复
由他们往 k 集合还有nmk集合连线, (2m1)k 往k每个点连接的组合,不可为空, 2m2(nmk) 往(n-m-k)每个点连接的组合,可为空,因为点集k到点集(n-m-k)如果有边,一定是 {k}{nmk} 这种方向 这样源状态无重复,特殊连点后也不会重复。

证毕
转移方程即为
dp[n][m]=k=1nm(2m1)k2m(nmk)Cmndp[nm][k]

2·求n个点的有标号无向图的个数。
我感觉这个比较好理解。
用小容斥的方式 n个点任意连线的方案数是 2n(n1)2
用他减掉不连通的情况,即为n个点连通的方案。
这样定义 dp[n] 表示n个点连通的方案数。
因为有编号,这样转移时假设1标号所在块为连通(自身也为连通)
这样 k=1n1dp[k] 含义定为标号1的点所在连通块k为基准。这样只要保证其余点跟这个连通块没有任何连接,其他随便连,即为当前状况的非连通方案数。
也就是 Ck1n1 选择跟标号1连通的其余k-1个点
2(nk)(nk1)2 其余 nk1 个点内部任意连接。
转移方程出来了
dp[n]=2n(n1)2k=1n1Ck1n12(nk)(nk1)2dp[k]

3·回到此题
找n*m的二分图中连通二分图的个数。
定义 dp[i][j] 同上
同样的,计算 dp[n][m] 只要用总方案数减去不合法的即可
总方案数为 2nm 即共n*m条边,选择连与不练。
其中左n右m个点都有边相连为合法状态。除此外均为非法状态。
那么 2nm=dp[n][m]
同上题一样,保证标号1在 dp[i][j] 中 那么 Cn1i1 选择 dp[i][j] 中左边其余 i1 个点 Cmj 选择 dp[i][j] 中右边其余 j 个点 其余左边n-i个点,右边m-j个点随意组合,不与dp[i][j]中已有点连接即可。

转移方程如下:
dp[n][m]=2nm1in0jmCi1n1Cjm2(ni)(mj)dp[i][j]

需要注意的是开LL,很容易越界。
另外因为每个格子可以选择主\副两种对角线,但是同效的。
也就是上面方程中2均变为3

代码如下:

#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <list>
#include <algorithm>
#include <map>
#include <set>
#define LL long long
#define Pr pair<int,int>
#define fread(ch) freopen(ch,"r",stdin)
#define fwrite(ch) freopen(ch,"w",stdout)

using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 10000;
const int mod = 1e9+7;
const double eps = 1e-8;

LL dp[11][11];
LL pre[11][11];

LL pow_m(LL a,int b)
{
    LL ans = 1;

    while(b)
    {
        if(b&1) ans = (ans*a)%mod;
        b >>= 1;
        a = (a*a)%mod;
    }

    return ans;
}

LL C(int m,int n)
{
    if(m == n) return 1;
    if(m == 0) return 0;
    if(~pre[m][n]) return pre[m][n];
    return pre[m][n] = (C(m-1,n-1)+C(m-1,n))%mod;
}

LL solve(int n,int m)
{
    for(int p = 1; p <= n; ++p)
    {
        for(int q = 0; q <= m; ++q)
        {
            dp[p][q] = pow_m(3,p*q);
            int cnt = 0;
            for(int i = 1; i <= p; ++i)
                for(int j = 0; j <= q; ++j)
                {
                    if(i+j == p+q) continue;
                    cnt = (cnt+((((C(p-1,i-1)*C(q,j)*dp[i][j])%mod)*pow_m(3,(p-i)*(q-j)))%mod))%mod;
                }
            dp[p][q] = (((dp[p][q]-cnt)%mod)+mod)%mod;
        }
    }
    return dp[n][m];
}

int main()
{
    //fread("");
    //fwrite("");

    int n,m;
    memset(pre,-1,sizeof(pre));

    while(~scanf("%d%d",&n,&m))
    {
        printf("%lld\n",solve(n,m));
    }

    return 0;
}
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值