一、什么是相似度
在数学和计算机科学中,向量通常由一组有序的数值组成,可以代表多种类型的数据,如文本、图像、声音等。向量相似度是指衡量两个向量在多维空间中相似程度的指标。向量相似度的计算方法有很多种,不同的方法适用于不同的场景。
二、常见的向量相似度度量方法
1、欧氏距离(Euclidean Distance)
欧氏距离(Euclidean Distance),也称为欧几里得距离,是最常用的空间距离度量之一。它用于衡量多维空间中两点之间的直线距离。在二维和三维空间中,欧氏距离对应于日常生活中的直观概念,即两点之间的“最短距离”。
在二维平面上,如果有两个点和
,那么它们之间的欧氏距离d可以通过下面的公式计算:
对于n维空间中的两个点和
,欧氏距离的计算公式为&#