学习率是如何影响模型训练的?

一、概念

        在深度学习中,学习率(Learning Rate,LR)是一个至关重要的超参数,它控制着模型参数在梯度下降过程中的更新步长。在每次训练迭代中,模型参数按照损失函数关于参数的梯度方向进行更新,而学习率决定了更新的幅度。我们可以通过公式更为直观地理解学习率的作用,例如在梯度下降算法中,我们用 α 来表示学习率,则基本公式如下:

\theta = \theta - \alpha \cdot \bigtriangledown _{\theta}J(\theta)

        其中,θ 表示模型的参数向量,\bigtriangledown _{\theta}J(\theta)表示损失函数 J(θ) 关于参数 θ 的梯度。这个公式表示在每次迭代中,我们通过计算损失函数关于参数的梯度,然后乘以学习率 α,并从当前参数值中减去这个乘积,来更新参数 θ。很明显,学习率越大,待减的乘积则越大,参数更新的幅度也就越大。

二、影响

        学习率对模型训练过程的影响主要是以下两个方向:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值