不管是递归还是迭代遍历树的过程都是时间复杂度O(N),空间复杂度O(M) (M代表树的高度)
Morris是树相关遍历的最优解,它的时间复杂度是O(N),空间复杂度O(1)
Maorris过程(纯手工)
我们看到依次遍历到的是 a b d b e a c f c g
代码部分:
package dataStructure.morris;
import dataStructure.TreeNode;
public class MorrisLoopTree {
public static void morris(TreeNode head) {
//如果头节点都是空的,不处理
if(head == null) return;
//定义两个变量cur表示当前遍历到的节点
TreeNode cur = head;
//mostRight代表当前位置的左子树的最右节点
TreeNode mostRight = null;
//按照我们定义的规则,cur == null的时候所有的节点都已经遍历完了
while (cur != null) {
int val = cur.value;
System.out.print(val == 1? "a" : val == 2? "b" : val == 3? "c" : val == 4? "d" : val == 5? "e" : val==6? "f" : "g");
System.out.print(" ");
mostRight = cur.left;
if(mostRight != null) {//条件2:如果cur的左子树不为空,分我两种情况
//找左子树的最右节点
while(mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
//条件2.a,如果mostRight.right==null代表这个节点是第一次到达
if(mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
continue;
} else {//条件2.b:如果mostRight.right != null也就是mostRight.right = cur表示这是第二次到达了,直接改为空,避免下一次处理
mostRight.right = null;
}
}
//条件1,如果没有左子树,直接跳到右子树
//取巧,这里本来要加一个else,但是它和条件2的cur的改变都是cur = cur.right,所以合并了
cur = cur.right;
}
}
public static void main(String[] args) {
TreeNode a = new TreeNode(1);
TreeNode b = new TreeNode(2);
TreeNode c = new TreeNode(3);
TreeNode d = new TreeNode(4);
TreeNode e = new TreeNode(5);
TreeNode f = new TreeNode(6);
TreeNode g = new TreeNode(7);
a.left = b;
a.right = c;
b.left = d;
b.right = e;
c.left = f;
c.right = g;
morris(a);
}
}
代码运行结果:
a b d b e a c f c g
Process finished with exit code 0
跟我们预期结果一致
但是我们平时遇到的题目都是先序、中序、后序遍历,而不是Morris遍历,我们想办法把Morris遍历改为先序中序和后序遍历
Morris遍历的规律:有左子树的节点会到达两次,没有的到达一次
改造成先序:先序是先根节点、然后左子树,然后右子树,我们对于cur节点,有左子树的节点,第一次到达的时候打印即可,没有左子树直接打印
根据原来的树我们先序的顺序应该是:a b d e c f g
现在我们改造原来的morris算法为先序:
public static void morrisPre(TreeNode head) {
//如果头节点都是空的,不处理
if(head == null) return;
//定义两个变量cur表示当前遍历到的节点
TreeNode cur = head;
//mostRight代表当前位置的左子树的最右节点
TreeNode mostRight = null;
//按照我们定义的规则,cur == null的时候所有的节点都已经遍历完了
while (cur != null) {
System.out.print(" ");
mostRight = cur.left;
if(mostRight != null) {//条件2:如果cur的左子树不为空,分我两种情况
//找左子树的最右节点
while(mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
//条件2.a,如果mostRight.right==null代表这个节点是第一次到达
if(mostRight.right == null) {
//如果mostRight.right == null代表第一次遍历到cur节点,如果是第二次的话mostRight.right应该是cur
int val = cur.value;
System.out.print(val == 1? "a" : val == 2? "b" : val == 3? "c" : val == 4? "d" : val == 5? "e" : val==6? "f" : "g");
mostRight.right = cur;
cur = cur.left;
continue;
} else {//条件2.b:如果mostRight.right != null也就是mostRight.right = cur表示这是第二次到达了,直接改为空,避免下一次处理
mostRight.right = null;
}
} else {
//如果没有左孩子,则直接打印
int val = cur.value;
System.out.print(val == 1? "a" : val == 2? "b" : val == 3? "c" : val == 4? "d" : val == 5? "e" : val==6? "f" : "g");
}
//条件1,如果没有左子树,直接跳到右子树
//取巧,这里本来要加一个else,但是它和条件2的cur的改变都是cur = cur.right,所以合并了
cur = cur.right;
}
}
运行结果: a b d e c f g
中序遍历:先左后跟然后是右,根据Morris遍历的过程,有左子树的节点,只需要当节点到达第二次的时候打印即可,没有左子树直接打印,原来的树的中序遍历应该是:
Morris改造成中序的代码:
public static void morrisIn(TreeNode head) {
//如果头节点都是空的,不处理
if(head == null) return;
//定义两个变量cur表示当前遍历到的节点
TreeNode cur = head;
//mostRight代表当前位置的左子树的最右节点
TreeNode mostRight = null;
//按照我们定义的规则,cur == null的时候所有的节点都已经遍历完了
while (cur != null) {
System.out.print(" ");
mostRight = cur.left;
if(mostRight != null) {//条件2:如果cur的左子树不为空,分我两种情况
//找左子树的最右节点
while(mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
//条件2.a,如果mostRight.right==null代表这个节点是第一次到达
if(mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
continue;
} else {//条件2.b:如果mostRight.right != null也就是mostRight.right = cur表示这是第二次到达了,直接改为空,避免下一次处理
//如果是第二次的话mostRight.right应该是cur,如果mostRight.right == null代表第一次遍历到cur节点,
int val = cur.value;
System.out.print(val == 1? "a" : val == 2? "b" : val == 3? "c" : val == 4? "d" : val == 5? "e" : val==6? "f" : "g");
mostRight.right = null;
}
} else {
//如果没有左孩子,则直接打印
int val = cur.value;
System.out.print(val == 1? "a" : val == 2? "b" : val == 3? "c" : val == 4? "d" : val == 5? "e" : val==6? "f" : "g");
}
//条件1,如果没有左子树,直接跳到右子树
//取巧,这里本来要加一个else,但是它和条件2的cur的改变都是cur = cur.right,所以合并了
cur = cur.right;
}
}
运行结果:d b e a f c g
对于原来那棵树后序遍历的结果应该是:d e b f g c a
通过Morris改后序遍历是比较麻烦的,总体思路是:遍历到每个节点第二次的时候逆序打印左子树的右边界,然后打印整棵树的右边界,对于这棵树来说是这样的:
a(第一次来到a,不管) b(第一次来到b,不管) d (第一次来到d,不管)b(第二次来到b打印b左子树的右边界d) e(第一次来到e不管) a(第二次来到a打印左子树的右边界e b) c(第一次来到c不管) f(第一次来到f不管) c(第二次来到c,打印c左子树的右边界f) g(第一次来到g不管)
最右打印整棵树的右边界g c a
我们可以看到这个过程确实是后序遍历的过程d e b f g c a
代码中的难点是是打印右边界(某个节点的左子树的右边界和整棵树的右边界)
整体算法代码我稍后更新