数据结构—算法(第二章)

 

目录

1. 算法定义:

2. 算法的特性

<1>  输入输出

<2>  有穷性

<3>  确定性

<4>  可行性

3. 算法设计的要求

<1>  正确性

<2>   可读性

<3>  健壮性

<4>  时间效率高和存储量低

4. 算法效率的度量方法

<1>   事后统计方法(此方法不推荐)

<2>  事前分析估算方法

5.函数的渐近增长

6.算法时间复杂度

<1>  算法时间复杂度定义

<2>  推导大〇阶方法

<3>  常数阶

<4>  线性阶

<5>  对数阶

<6>  平方阶

7. 常见的时间复杂度

8. 最坏情况与平均情况

9. 算法空间复杂度

10. 总结要点


算法:算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。

数据结构和算法的关系:把数据结构和算法相结合是为了更方便理解数据结构,让我们知道数据结构的用处,使我们对数据结构的理解更加深刻,印象更加深刻。

1. 算法定义:

什么是算法:算法是描述解决问题的方法。

算法的定义:算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或者多个操作。

对于给定的问题,是可以有多种算法来解决的

算法定义中提到了指令,指令能被人或者机器等计算装置执行。它可以是计算机指令,也可以是我们平时的语言文字。

为了解决某个或者某类问题,需要把指令表示成一定的操作序列,操作序列包括一组操作,每一个操作都完成特定的功能,这就是算法了。

2. 算法的特性

算法具有五个基本特性:输入、输出、有穷性、确定性和可行性。

<1>  输入输出

算法具有零个或者多个输入。绝大多数算法来说输入都是必要的,但对于个别情况,如打印“hello world!”这样的代码,是不需要任何输入参数的,所以算法的输入可以是零个。

算法至少要有一个或者多个输出,算法一定需要输出的,没有输出,你用这个算法干什么?输出的形式可以是打印输出,也可以是返回一个或者多个值等。

<2>  有穷性

有穷性:指算法在执行有限的步骤之后,自动结束而不会出现无限循环,并且每个步骤在可接受的时间内完成

当然这里有穷的概念并不是纯数学意义的,而是在实际应用当中合理的、可以接受的“有边界”。如果你写一个算法,计算机需要算上二十年,一定会结束,它在数学上是有穷的了,可是媳妇都熬成婆了,算法的意义也就不大了。

<3>  确定性

确定性:算法的每一步骤都具有确定的含义,不会出现二义性。

算法在一定条件下,只有一条执行路径,相同的输入只能有唯一的输出结果。算法的每个步骤被精确定义而无歧义。

<4>  可行性

可行性:算法的每一步都必须是可行的,也就是说步都能通过执行有限次数完成。

可行性意味着算法可以转换为程序上机运行,并得到正确的结果,尽管在目前计算机界也存在没有实现的极为复杂的算法,不是说理论上不能实现,而是因为过于复杂,我们当前的编程方法,工具和大脑限制了这个工作,不过这都是理论研究领域的问题,不属于我们现在要考虑的范围。

3. 算法设计的要求

我们谈到过,算法不是唯一的。也就是说,同一个问题,可以有多种解决问题的算法。尽管算法不唯一,相对好的算法还是存在的。掌握好的算法,对我们解决问题很有帮助。

<1>  正确性

正确性:算法的正确性是指算法至少应该具有输入、输出和加工处理无歧义性、能正确反映问题的需求、能够得到问题的正确答案

但是算法的“正确”通常在用法上有很大的差别,大体分为以下四个层次。

1. 算法程序设计没有语法错误。

2. 算法程序对于合法的输入数据能够产生满足要求的输出结果。

3. 算法程序对于非法的输入数据能够得出满足规格说明的结果。

4. 算法程序对于精心选择的,甚至是刁难的测试数据都有满足要求的输出结果。

层次1 的要求最低,仅仅没有语法错误实在谈不上是一个好算法。层次4是最困难的,我们几乎不可能逐一验证所有的输入和输出都得到正确的结果。

因此算法在大多数情况下都不可能用程序来证明,而是数学方法证明的。

<2>   可读性

可读性:算法设计的另一个目的是为了便于阅读、理解和交流

可读性有助于人们理解算法,晦涩难懂的算法往往隐含错误,不易被发现,并且难于调试和修改。

我们写代码的目的,一方面是为了让计算机执行,但还有一个重要的目的是为了便于他人理解,让人理解和交流,自己将来也可能阅读,如果可读性不好,时间长了自己都不知道写了些什么。可读性是算法(也包括实现他的代码)好坏很重要的标志。

<3>  健壮性

健壮性:当输入的数据不合法时,算法也能作出相关处理,而不是产生异常或莫名其妙的结果

一个好的算法还应该能对输入数据不合法的情况做合适的处理。比如输入的时间或者距离不应该是负数等。

<4>  时间效率高和存储量低

最后好的算法还应该具备时间效率高和存储量低的特点。

时间效率指的是算法的执行时间,对于同一个问题,如果有多个算法可以解决,执行时间短的算法效率高,执行时间长的效率低。

存储量需求指的是算法在执行过程中需要的最大存储空间,主要指算法程序运行时所占用的内存或外部硬盘存储空间。

设计算法应该尽量满足时间效率高和存储量低的需求。在生活中,人们希望花最少的钱,用最短的时间,来办最大的事,算法也是一样的思想,花最少的时间,办成同样的事就是好的算法。

综上,好的算法,应该具有正确性、可读性、健壮性、高效率和低存储量的特征

4. 算法效率的度量方法

刚才我们提到设计算法要提高效率。这里效率大都指算法的执行时间。那么我们 如何度量一个算法的执行时间呢?

正所谓“是骡子是马,拉出来遛遛”。比较容易想到的方法就是,我们通过对算法 的数据测试,利用计算机的计时功能,来计算不同算法的效率是高还是低。

<1>   事后统计方法(此方法不推荐)

事后统计方法:这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。

但这种方法显然是有很大缺陷的:

  • 必须依据算法事先编制好程序,这通常需要花费大量的时间和精力。如果编制出来发现它根本是很糟糕的算法,不是竹篮打水一场空吗?
  • 时间的比较依赖计算机硬件和软件等环境因素,有时会掩盖算法本身的优劣。要知道,现在的一台四核处理器的计算机,跟当年286、386、486等老爷爷辈的机器相比,在处理算法的运算速度上,是不能相提并论的;而所用的操作系统、编译器、运行框架等软件的不同,也可以影响它们的结果;就算是同一台机器,CPU使用率和内存占用情况不一样,也会造成细微的差异。
  • 算法的测试数据设计困难,并且程序的运行时间往往还与测试数据的规模有很大关系,效率高的算法在小的测试数据面前往往得不到体现。比如10个数字的排序,不管用什么算法,差异几乎是零。而如果有一百万个随机数字排序,那不同算法的差异就非常大了。那么我们为了比较算法,到底用多少数据来测试,这是很难判断的问题。

基于事后统计方法有这样那样的缺陷,我们考虑不予采纳。

<2>  事前分析估算方法

我们的计算机前辈们,为了对算法的评判更科学,研究出了一种叫做事前分析估算的方法

事前分析估算方法:在计算机程序编制前,依据统计方法对算法进行估算

经过分析,我们发现,一个用高级程序语言编写的程序在计算机上运行时所消耗的时间取决于下列因素

  1. 算法采用的策略、方法。
  2. 编译产生的代码质量。
  3. 问题的输入规模。
  4. 机器执行指令的速度。

第1条当然是算法好坏的根本,第2条要由软件来支持,第4条要看硬件性能。也就是说,抛开这些与计算机硬件、软件有关的因素,一个程序的运行时间,依赖于算法的好坏和问题的输入规模。所谓问题输入规模是指输入量的多少。

我们来举个简单的例子,两种求和的算法:

//第一种算法:
int i, sam=0,n=100;      //执行1次
for(i = 1; i <= n; ++i)  //执行n+1次
{
    sum = sum + i;       //执行n次
}
printf("%d", sum);       //执行1次

//第二种算法:
int sum = 0;n = 100;     //执行1次
sum = (1 + n) * n/2;     //执行1次
printf("%d", sum);       //执行1次

显然,第一种算法,执行了 1+ (n+1) +n+1=2n+3次;而第二种算法,是1+1+1=3次。事实上两个算法的第一条和最后一条语句是一样的,所以我们关注的代码其实是中间的那部分,我们把循环看作一个整体,忽略头尾循环判断的开销,那么这两个算法其实就是n次与1次的差距。算法好坏显而易见。

我们再来延伸一下上面的这个例子:

int i, j, x = 0,sum = 0,n = 100;  //执行1次
for(i = 1;i <= n;i++)
{
    for( j = 1; j <= n; j++)
    {
        x++;                      //执行n*n次
        sum = sum + x;        
    }
}
printf("%d",sum);                 //执行1次

这个例子中,i 从1到100,每次都要让 j 循环100次,而当中的x++sum = sum + x;其实就是1+2+3+…+10000,也就是100^{2}次,所以这个算法当中,循环部分的代码整体需要执行n^{2}(忽略循环体头尾的开销)次。显然这个算法的执行次数对于同样的输入规模n = 100,要多于前面两种算法,这个算法的执行时间随着 n 的增加也将远远多于前面两个。

此时你会看到,测定运行时间最可靠的方法就是计算对运行时间有消耗的基本操作的执行次数。运行时间与这个计数成正比。

我们不关心编写程序所用的程序设计语言是什么,也不关心这些程序将跑在什么样的计算机中,我们只关心它所实现的算法。这样,不计那些循环索引的递增和循环终止条件、变量声明、打印结果等操作,最终,在分析程序的运行时间时,最重要的 是把程序看成是独立于程序设计语言的算法或一系列步骤。

可以从问题描述中得到启示,同样问题的输入规模是n,求和算法的第一种,求1+2+…需要一段代码运行n次。那么这个问题的输入规模使得操作数量是f (n) = n,显然运行100次的同一段代码规模是运算10次的10倍。而第二种,无论n为多少,运行次数都为1,即f (n) = 1;第三种,运算100次是运算10次的100 倍。因为它是f (n) =n^{2}

我们在分析一个算法的运行时间时,重要的是把基本操作的数量与输入规模关联起来,即基本操作的数量必须表示成输入规模的函数

我们可以这样认为,随着n值的越来越大,它们在时间效率上的差异也就越来越大

5.函数的渐近增长

假设有两个算法A和B,两个算法的输入规模都是 n,算法A要做2n + 3次操作,你可以理解为先有一个n次的循环,执行完成后,再 有一个n次循环,最后有三次赋值或运算,共2n + 3次操作。算法B要做3n+ 1次 操作。你觉得它们谁更快呢?

准确说来,答案是不一定的

次数

算法 A (2n + 3)

算法A^{'} ( 2n )

算法 B ( 3n + 1 )

算法B^{'}( 3n )

n = 1

5

2

4

3

n = 2

7

4

7

6

n = 3

9

6

10

9

n = 10

23

20

31

30

n= 100

203

200

301

300

n = 1时,算法A效率不如算法B (次数比算法B要多一次)。而当n = 2时,两者效率相同;当n > 2时,算法A就开始优于算法B 了,随着n的增加,算法A算法B越来越好了执行的次数B要少)。于是我们可以得出结论,算法A总体上要好过算法B

此时我们给出这样的定义,输入规模n在没有限制的情况下,只要超过一个数值 N这个函数就总是大于另一个函数,我们称函数是渐近增长的。

函数的渐近增长:给定两个函数f ( n )g ( n ),如果存在一个整数N,使得对于所有的n > Nf ( n )总是比g ( n )大,那么,我们说f ( n )的增长渐近快于g ( n )。

从中我们发现,随着n的增大,后面的+3还是+1其实是不影响最终的算法变化的,例如算法A'与算法B' ,所以,我们可以忽略这些加法常数。后面的例子,这样的常数被忽略的意义可能会更加明显。

我们来看第二个例子,算法C4n + 8,算法D是2n2+l (如表2-8-2所示)。

次数

算法 C ( 4n+8 )

算法C'n )

算法 D ( 2n^{2}+1 )

*法 D' ( n2 )

n = 1

12

1

3

1

n = 2

16

2

9

4

n = 3

20

3

19

9

n = 10

48

10

201

100

n= 100

408

100

20 001

10 000

n = 1000

4 008

1 000

2 000 001

1 000 000

n<3的时候,算法C要差于算法D ( 因为算法C次数比较多),但当n > 3后,算法C的优势就越来越优于算法D了,到后来更是远远胜过。而当后面的常数去掉后,我们发现其实结果没有发生改变。甚至我们再观察发现,哪怕去掉与n相乘的常数,这样的结果也没发生改变,算法C'的次数随着n的增长,还是远小于算法 D'。也就是说,与最高次项相乘的常数并不重要

我们再来看第三个例子。算法E2n^{2}+ 3n + 1,算法F是2n^{3} + 3n + 1

次数

算法 E (2n^{2}+ 3n + 1

算法E'(n^{2}

算法 F (2n^{3} + 3n + 1

算法F'(n^{3}

n = 1

6

1

6

1

n = 2

15

4

23

8

n = 3

28

9

64

27

n = 10

231

100

2 031

1 000

n = 100

20 301

10 000

2 000 301

1 000 000

n = 1的时候,算法E与算法F结果相同,但当n > 1后,算法E的优势就要开始优于算法F随着n的增大,差异非常明显。通过观察发现,最高次项的指数大的,函数随着n的增长,结果也会变得增长特别快。

我们来看最后一个例子。算法G是2n^{2},算法H是3n + 1,算法 I 是2n^{2}+ 3n + 1 。

次数

算法G(2n^{2}

算法 H (3n+1)

算法 I (2n^{2}+ 3n + 1

n = 1

2

4

6

n = 2

8

7

15

n = 5

50

16

66

n = 10

200

31

231

n = 100

20 000

301

20 301

n= 1,000

2 000 000

3 001

2 003 001

n = 10,000

200 000 000

30 001

200 030 001

    n = 100,000

20 000 000 000

300 001

20 000 300 001

n= 1,000,000

2 000 000 000 000

3 000 001

200 000 3000 001

这组数据应该就看得很清楚。n的值越来越大时,你会发现,3n+1已经没法和2n^{2}的结果相比较,最终几乎可以忽略不计。也就是说,随着n值变得非常大以后,算法G其实已经很趋近于算法 I 。于是我们可以得到这样一个结论,判断一个算法的效率时,函数中的常数和其他次要项常常可以忽略,而更应该关注主项(最高阶项)的阶数

判断一个算法好不好,我们只通过少量的数据是不能做出准确判断的。根据刚才的几个样例,我们发现,如果我们可以对比这几个算法的关键执行次数函数的渐近增长性,基本就可以分析出:某个算法,随着n的增大,它会越来越优于另一算法,或者越来越差于另一算法这其实就是事前估算方法的理论依据,通过算法时间复杂度来估算算法时间效率

6.算法时间复杂度

<1>  算法时间复杂度定义

在进行算法分析时,语句总的执行次数T ( n ) 是关于问题规模 n 的函数,进而分析T ( n ) n的变化情况并确定T ( n ) 的数置级。算法的时间复杂度,也就是算法的时间量度,记作:T(n) = 〇(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和 f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复 杂度。其中f ( n )是问题规模n的某个函数。

这样用大写〇( ) 来体现算法时间复杂度的记法,我们称之为大〇记法

—般情况下,随着n的增大,T ( n ) 增长最慢的算法为最优算法。

显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别 为〇( n ) ,〇( 1 ) ,〇(n^{2}) 。我们分别给它们取了非官方的名称,〇( n )叫常数阶、〇( 1 )叫线 性阶、〇(n^{2}) 叫平方阶。

<2>  推导大〇阶方法

那么如何分析一个算法的时间复杂度呢?即如何推导大〇阶呢?我们给出了下面的推导方法。

推导大〇阶:

1. 用常数1取代运行时间中的所有加法常数。

2. 在修改后的运行次数函数中,只保留最高阶项。

3. 如果最高阶项存在且不是1,则去除与这个项相乘的常数。

得到的结果就是大〇阶。

<3>  常数阶

首先顺序结构的时间复杂度。下面这个算法高斯算法),为什么时间复杂度不是〇(3),而是〇(1)。

int sum = 0,n = 100;    //执行一次

sum =  ( 1+n ) *n/2;    //执行一次

printf ("%d", sum);     //执行一次

这个算法的运行次数函数是f (n) =3。根据我们推导大〇阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为〇(1)。

另外,我们试想一下,如果这个算法当中的语句sum= (1+n) *n/2有10句, 即:

int sum = 0,n =	100; /*	执行1次 */	
sum =(1+n) *n/2;     /*	执行第1次 */
sum =(1+n) *n/2	     /*	执行第2次 */
sum =(1+n) *n/2	     /*	执行第3次 */
sum =(1+n) *n/2	     /*	执行第4次 */
sum =(1+n) *n/2	     /* 执行第5次 */
sum =(1+n) *n/2	     /*	执行第6次 */
sum =(1+n) *n/2	     /*	执行第7次 */
sum =(1+n) *n/2	     /*	执行第8次 */
sum =(1+n) *n/2	     /*	执行第9次 */
sum =(1+n) *n/2	     /*	执行第10次*/
printf("%d',sum);   /* 执行1次 */

事实上无论n为多少,上面的两段代码就是3次和12次执行的差异。

这种与问题的大小无关n的多少),执行时间恒定的算法,我们称之为具有〇(1)的时间复杂度,又叫常数阶。

注意:不管这个常数是多少,我们都记作〇(1),而不能是〇(3)、〇(12)等其他任何数字。

对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n的变大而发生变化,所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是〇(1)

<4>  线性阶

线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况

下面这段代码,它的循环的时间复杂度为〇(n),因为循环体中的代码须要执行n次。

int i;
for (i = 0; i < n; i++;
{
    /*时间复杂度为0(1)的程序步驟序列*/
}	

<5>  对数阶

下面的这段代码,时间复杂度是多少呢?

int count = 1;
while ( count < n )
{
    count = count * 2;    /*时间复杂度为0(1>的程序步驟序列*/
}

由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2^{x}=n 得到x=log_{2}n所以这个循环的时间复杂度为〇(logn)。

<6>  平方阶

下面例子是一个循环嵌套,它的内循环时间复杂度为 〇(n)

int i,j;
for ( i = 0; i < n; i++)
{
    for (j = 0; j < n; j++)
    {
        /*时间复杂度为〇(1)的程序步骤序列*/
    }
}

而对于外层的循环,不过是内部这个时间复杂度为〇(n)的语句,再循环 n 次。所以这段代码的时间复杂度为〇(n^{2}

如果外循环的循环次数改为了 m,时间复杂度就变为〇(m*n)

int i,j;
for ( i = 0; i < m; i++)
{
    for (j =0; j < n; j++)
    {
        /*时间复杂度为〇(1)的程序步骤序列*/
    }
}

所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。

那么下面这个循环嵌套,它的时间复杂度是多少呢?

int i,j;
for ( i = 0; i < n; i++)
{
    for (j = i; j < n; j++)    /* 注意 j = i 而不是 0 */
    {
        /*时间复杂度为〇(1)的程序步骒序列*/
    }
}

由于当i = 0时,内循环执行了 n次,当 i = 1时,执行了 n-1 次, 时,执行了 1 次。所以总的执行次数为:

n + (n - 1) + (n - 2) + …+ 1= \frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2}

用我们推导大〇阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留\frac{n^{2}}{2}第三条,去除这个项相乘的常数,也就是去除\frac{1}{2},最终这段代码的时间复杂度为〇(n^{2}

这个例子,对于方法调用的时间复杂度又如何分析。

int i,j;
for ( i = 0; i < n; i++ )
{ 
    function (i);
}    

上面这段代码调用一个函数function。

void function ( int count)
{
    printf("%d", count );
}

函数体是打印这个参数。其实这很好理解,function函数的时间复杂度是〇(1)。所以整体的时间复杂度为〇(n)

假如function是下面这样的:

void function ( int count )
{
    int j ;
    for (j = count; j < n; j++)
    {
        /*时间复杂度为〇(1)的程序步骤序列*/
    }
}

事实上,这和刚才举的例子是一样的,只不过把嵌套内循环放到了函数中,所以 最终的时间复杂度为〇(n^{2}

下面这段相对复杂的语句:

n++;                        /*执行次数为1 */
function ( n );             /*执行次数为n */
int i,j;                    /*执行次数为1 */
for ( i = 0; i < n; i++)    /*执行次数为n2 */
{
    function ( i);
}
for (i = 0; i < n; i++)     /*执行次数为n ( n + 1 ) /2 */
{
    for (j = i;j < n; j++)
    {
        /*时间复杂度为〇(1)的程序步骒序列*/
    }
}

它的执行次数f(n)=1+n+n^{2}+\frac{n(n+1)}{2}=\frac{3}{2}n^{2}+\frac{3}{2}n+1,根据推导大〇阶的方法,最终这段代码的时间复杂度也是〇(n^{2})。

7. 常见的时间复杂度

常见的时间复杂度如下表所示。

执行次数函数

非正式术语

12

   〇(1)

   常数阶

2n+3

〇(n)

线性阶

3n^{2}+2n+1

〇(n^{2})

平方阶

5log_{2}n+20

〇(logn)

对数阶

2n+3nlog_{2}n+19

〇(nlogn)

nlogn 阶

6n^{3}+2n^{2}+3n+4

〇(n^{3})

立方阶

    2^{n}   〇(2^{n})

指数阶

常用的时间复杂度所耗费的时间从小到大依次是:

〇(1) < 〇(logn) < 〇(n) < 〇(nlogn) < 〇(n^{2}) < 〇(n^{3}) < 〇(2^{n}) <〇(n!) <〇(n^{n})

了解了 〇( 1 ) 常数阶、〇(logn)对数阶、〇(logn)线性阶、〇(n^{2}) 平方阶等,像〇(n^{3}) ,过大的n都会使得结果变得不现实。同样指数阶〇(2^{n}) 和阶乘阶〇(n!) 等除非是很小的n值,否则哪怕n只是100,都是噩梦般的运行时间。所以这种不切实际的算法时间复杂度,一般都不去讨论它。

8. 最坏情况与平均情况

你早晨上班出门后突然想起来,手机忘记带了,这年头,钥匙、钱包、手机三大件,出门哪样也不能少呀。于是回家找。打开门一看,手机就在门口玄关的台子上,原来是出门穿鞋时忘记拿了。这当然是比较好,基本没花什么时间寻找。可如果不是放在那里,你就得进去到处找,找完客厅找卧室、找完卧室找厨房、找完厨房找卫生间,就是找不到,时间一分一秒的过去,你突然想起来,可以用家里座机打一下手机,听着手机铃声来找呀,真是笨。终于找到了,在床上枕头下面。你再去上班,迟到。见鬼,这一年的全勤奖,就因为找手机给黄了。

找东西有运气好的时候,也有怎么也找不到的情况。但在现实中,通常我们碰到的绝大多数既不是最好的也不是最坏的,所以算下来是平均情况居多。

算法的分析也是类似,我们查找一个有n个随机数字数组中的某个数字,最好的情况是第一个数字就是,那么算法的时间复杂度为〇( 1 ),但也有可能这个数字就在最后一个位罝上待着,那么算法的时间复杂度就是〇( n ),这是最坏的一种情况了。

最坏情况运行时间是一种保证,那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求,通常,除非特别指定,我们提到的运行时间都是最坏情况的运行时间。

平均运行时间也就是从概率的角度看,这个数字在每一个位置的可能性是相同的,所以平均的査找时间为n/2次后发现这个目标元素。

平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。也就是说,我们运行一段程序代码时,是希望看到平均运行时间的。可现实中,平均运行时间很难通过分析得到,一般都是通过运行一定数量的实验数据后估算出来的

对算法的分析种方法是计算所有情况的平均值,这种时间复杂度的计算方法称为平均时间复杂度。另一种方法是计算最坏情况下的时间复杂度,这种方法称为最坏时间复杂度。一般在没有特殊说明的情况下,都是指最坏时间复杂度

9. 算法空间复杂度

我们在写代码时,完全可以用空间来换取时间,比如说,要判断某某年是不是闰年,你可能会花一点心思写了一个算法,而且由于是一个算法,也就意味着,每次给个年份,都是要通过计算得到是否是闰年的结果。还有另一个办法就是,事先建立一个有2050个元素的数组年数略比现实多一点),然后把所有的年份按下标的数字对应,如果是闰年,此数组项的值就是1,如果不是值为0。这样,所谓的判断某一年是否是闰年,就变成了査找这个数组的某一项的值是多少的问题。此时,我们的运算是最小化了,但是硬盘上或者内存中需要存储这2050个0和1。

这是通过一笔空间上的开销来换取计算时间的小技巧。到底哪一个好,其实要看你用在什么地方。

算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n) = O( f( ) )其中,n为问题的规模,f(n)为语句关于 n 所占存储空间的函数。

一般情况下,一个程序在机器上执行时,除了需要存储程序本身的指令、常数、变量和输入数据外,还需要存储对数据操作的存储单元。若输入数据所占空间只取决于问题本身,和算法无关,这样只需要分析该算法在实现时所需的辅助单元即可。若算法执行时所需的辅助空间相对于输入数据量而言是个常数,则称此算法为原地工作,空间复杂度为〇(1)

通常,我们都使用“时间复杂度”来指运行时间的需求,使用“空间复杂度”指空间需求。当不用限定词地使用“复杂度”时,通常都是指时间复杂度。

10. 总结要点

数据结构与算法的关系是相互依赖不可分割的。

算法的定义:算法是解决特定问题求解步骤的描述,在计算机中为指令的有限序列,并且每条指令表示一个或多个操作。

算法的特性:有穷性、确定性、可行性、输入、输出。

算法的设计的要求:正确性、可读性、健壮性、高效率和低存储量需求。不要和特性弄混淆了

算法的度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。

函数的渐近增长:给定两个函数 f( n ) g( n ),如果存在一个整数N使得对于所有的n > N, f( n ) 总是比g( n )大,那么,我们说f( n )的增长渐近快于g( n )。于是我们可以得出一个结论,判断一个算法好不好,我们只通过少量的数据是不能做出准确判断的,如果我们可以对比算法的关键执行次数函数的渐近增长性,基本就可以分析出: 某个算法,随着n的变大,它会越来越优于另一算法,或者越来越差于另一算法。

推导大O阶:                                 ‘

  • 用常数1取代运行时间中的所有加法常数。

  • 在修改后的运行次数函数中,只保留最高阶项。

  • 如果最高阶项存在且不是1,则去除与这个项相乘的常数。

得到的结果就是大O阶。

通过这个步骤,我们可以在得到算法的运行次数表达式后,很快得到它的时间复杂度,即大O阶。

常见的时间复杂度所耗时间的大小排列:

〇(1) < 〇(logn) < 〇(n) < 〇(nlogn) < 〇(n^{2}) < 〇(n^{3}) < 〇(2^{n}) <〇(n!) <〇(n^{n})

 算法最坏情况和平均情况的概念,以及空间复杂度的概念。

总结:编写程序时,一定要尽可能的优化算法,将时间复杂度降到最低,算法的优劣直接决定了程序运行时的效率。

愚公移山固然可敬,但发明炸药和推土机,可能更加实在聪明。

 

注:本博客是本人在学习《大话数据结构》后整理的笔记,用于自己以后的复习与回顾,博客中的照片是本人从《大话数据结构》中截取的。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值