LeetCode精讲(0581):数组中的最短无序连续子数组(Python)

题目内容

给定一个整数数组,你需要寻找一个连续的子数组,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序。

你找到的子数组应是最短的,请输出它的长度。

示例 1:

输入: [2, 6, 4, 8, 10, 9, 15]
输出: 5
解释: 你只需要对 [6, 4, 8, 10, 9] 进行升序排序,那么整个表都会变为升序排序。

说明:

  • 输入的数组长度范围在 [1, 10,000]。

  • 输入的数组可能包含重复元素 ,所以升序的意思是<=。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shortest-unsorted-continuous-subarray

解法效率

解法 时间复杂度 空间复杂度 执行用时
Ans 1 (Python) O(N2)O(N^2) O(N)O(N) 超出时间限制
Ans 2 (Python) O(N2)O(N^2) O(N)O(N) 超出时间限制
Ans 3 (Python) O(N2)O(N^2) O(1)O(1) 超出时间限制
Ans 4 (Python) O(NlogN)O(NlogN) O(N)O(N) 268ms (61.40%)
Ans 5 (Python) O(NlogN)O(NlogN) O(N)O(N) 232ms (98.99%)

LeetCode的Python执行用时随缘,只要时间复杂度没有明显差异,执行用时一般都在同一个量级,仅作参考意义。

解法一(暴力的栈实现):

【思路】

使用栈存储当前遍历的数组,如果发现新的数(n)比栈顶元素小,记录栈顶的坐标作为排序数组的结束坐标(reverse_max_idx);从栈中不断取出元素,直到取出的元素比该数(n)大或达到栈底,此时的坐标即为排序数组的起始坐标(reverse_min_idx);再将取出的元素升序放回栈中(可用另一个栈实现)。

排序数组的起始坐标一旦被确定,就不再更改;而排序数组的结束坐标,则不断更新。最终的结果即为排序树组的结束坐标减去起始坐标。

这种方法一直在维护一个升序的栈,但如果整个数组是一个倒序的数组,则会有巨大的时间复杂度。

def findUnsortedSubarray(self, nums: List[int]) -> int:
    stack = []
    reverse_min_idx = None
    reverse_max_idx = None
    for i in range(len(nums)):
        n = nums[i]
        if len(stack) == 0 or n >= stack[-1]:
            stack.append(n)
        else:
            reverse_end_idx = i
            reverse_start_idx = i

            # 使用临时栈到倒序部分升序
            temp_stack = []
            while len(stack) > 0 and n < stack[-1]:
                reverse_start_idx -= 1
                temp_stack.append(stack.pop(-1))
            temp_stack.append(n)

            while temp_stack:
                stack.append(temp_stack.pop(-1))

            # 更新升序数组起始坐标和升序数组结尾坐标
            if reverse_min_idx is None or reverse_start_idx < reverse_min_idx:
                reverse_min_idx = reverse_start_idx
            if reverse_max_idx is None or reverse_end_idx > reverse_max_idx:
                reverse_max_idx = reverse_end_idx

    if reverse_min_idx is not None and reverse_max_idx is not None:
        return reverse_max_idx - reverse_min_idx + 1
    else:
        return 0

解法二(暴力的维护最大值数组):

【思路】

解法一中,我们发现实际上我们需要维护完整的升序数组,只需要维护最大值数组即可。

但是,这种方法和解法一拥有相似的时间复杂度,这种方法仍然无法解决倒序数组时间复杂度过大的问题。

def findUnsortedSubarray(self, nums: List[int]) -> int:
    max_list = [-1] * len(nums)
    reverse_min_idx = None
    reverse_max_idx = None

    for i in range(len(nums)):
        if (i > 0 and nums[i] >= max_list[i - 1]) or i == 0:
            max_list[i] = nums[i]
        else:
            # 维护最大值数组
            max_list[i] = max_list[i - 1]

            # 计算起始坐标
            idx = i - 1
            while idx >= 0 and max_list[idx] > nums[i]:
                idx -= 1
            idx += 1

            # 更新升序数组起始坐标和升序数组结尾坐标
            if reverse_min_idx is None or idx < reverse_min_idx:
                reverse_min_idx = idx
            if reverse_max_idx is None or i > reverse_max_idx:
                reverse_max_idx = i

    if reverse_min_idx is not None and reverse_max_idx is not None:
        return reverse_max_idx - reverse_min_idx + 1
    else:
        return 0

解法三(暴力的两层循环):

【思路】

通过解法一和解法二我们发现,与其使用O(N2)的时间复杂度来维护一个升序栈或一个最大值数组,还不如直接用O(N2)的时间复杂度来比较数组中所有数之间的大小,仅维护需升序数组的起始坐标(reverse_min_idx)和结束坐标(reverse_max_idx)。

我们比较数组中每两个数组的大小,如果发现左边的比右边的大,那么就判断是否需要更新起始坐标(reverse_min_idx)和结束坐标(reverse_max_idx)。

但是这种方法的时间复杂度仍然是O(N^2)。

def findUnsortedSubarray(self, nums: List[int]) -> int:
    reverse_min_idx = len(nums) - 1
    reverse_max_idx = 0

    for i in range(len(nums)):
        for j in range(i + 1, len(nums)):
            if nums[i] > nums[j]:
                reverse_min_idx = min(reverse_min_idx, i)
                reverse_max_idx = max(reverse_max_idx, j)

    if reverse_min_idx > reverse_max_idx:
        return 0
    else:
        return reverse_max_idx - reverse_min_idx + 1

解法四(排序):

【思路】

我们想到与其分别比较所有数组,还不如直接将数组排序;比较原数组和排序后数组不同之处的最小坐标和最大坐标,这些坐标也就是需要升序数组的起始坐标和结束坐标。

这种方法的时间复杂度为排序的O(NlogN)和排序后遍历的O(N),时间复杂度大幅度下降。

def findUnsortedSubarray(self, nums: List[int]) -> int:
    minimum = len(nums) - 1
    maximum = 0
    sorts = sorted(nums)
    for i in range(len(nums)):
        if sorts[i] != nums[i]:
            minimum = min(minimum, i)
            maximum = max(maximum, i)

    return maximum - minimum + 1 if minimum < maximum else 0

解法五(解法四的优化):

【思路】

我们再在解法四的基础上做一个小小的优化,在遍历时不再完整遍历,而是从前往后、从后往前分别找到第一个存在差异的点即可。

def findUnsortedSubarray(self, nums: List[int]) -> int:
    sorts = sorted(nums)
    for i in range(len(nums)):
        if sorts[i] != nums[i]:
            minimum = i
            break
    else:
        return 0
    for i in range(len(nums) - 1, -1, -1):
        if sorts[i] != nums[i]:
            maximum = i
            break
    else:
        return 0
    return maximum - minimum + 1
展开阅读全文

Windows版YOLOv4目标检测实战:训练自己的数据集

04-26
©️2020 CSDN 皮肤主题: 游动-白 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值