前置定理 1 矩阵方程 A X = b \boldsymbol{A} \boldsymbol{X} = \boldsymbol{b} AX=b 有解的充分必要条件是 R ( A ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(A,B)。
证明见 “线性方程组与矩阵的秩”。
前置性质 2 R ( A T ) = R ( A ) R(\boldsymbol{A}^T) = R(\boldsymbol{A}) R(AT)=R(A)。
证明见 “矩阵的秩的性质”。
前置定理 3 设 m × n m \times n m×n 矩阵 A \boldsymbol{A} A 的秩 R ( A ) = r R(\boldsymbol{A}) = r R(A)=r,则 n n n 元齐次线性方程组 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 的解集 S S S 的秩 R S = n − r R_S = n - r RS=n−r。
证明见 “齐次线性方程组系数矩阵的秩与解集的秩”。
前置定理 4 矩阵 A = O \boldsymbol{A} = \boldsymbol{O} A=O 的充分必要条件是方阵 A T A = O \boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{O} ATA=O。
证明见 “【证明】矩阵A=O的充要条件是方阵A^TA=O”。
性质 1 R ( A B ) ≤ min { R ( A ) , R ( B ) } R(\boldsymbol{A} \boldsymbol{B}) \le \min \{R(\boldsymbol{A}),R(\boldsymbol{B})\} R(AB)≤min{R(A),R(B)}。
证明 设 A B = C \boldsymbol{A} \boldsymbol{B} = \boldsymbol{C} AB=C,则知矩阵方程 A X = C \boldsymbol{A} \boldsymbol{X} = \boldsymbol{C} AX=C 有解 X = B \boldsymbol{X} = \boldsymbol{B} X=B。根据前置定理 1 有 R ( A ) = R ( A , C ) R(\boldsymbol{A}) = R(\boldsymbol{A}, \boldsymbol{C}) R(A)=R(A,C),从而有 R ( C ) ≤ R ( A , C ) R(\boldsymbol{C}) \le R(\boldsymbol{A},\boldsymbol{C}) R(C)≤R(A,C),进而有 R ( C ) ≤ R ( A ) R(\boldsymbol{C}) \le R(\boldsymbol{A}) R(C)≤R(A)。
又 B T A T = C T \boldsymbol{B}^T \boldsymbol{A}^T = \boldsymbol{C}^T BTAT=CT,同理可证 R ( C T ) ≤ R ( B T ) R(\boldsymbol{C}^T) \le R(\boldsymbol{B}^T) R(CT)≤R(BT),根据前置性质 2,有 R ( C ) ≤ R ( B ) R(\boldsymbol{C}) \le R(\boldsymbol{B}) R(C)≤R(B)。
综上所述, R ( C ) ≤ min { R ( A ) , R ( B ) } R(\boldsymbol{C}) \le \min \{R(\boldsymbol{A}),R(\boldsymbol{B})\} R(C)≤min{R(A),R(B)},得证。
定理 2 若 A m × n B n × l = O \boldsymbol{A}_{m \times n} \boldsymbol{B}_{n \times l} = \boldsymbol{O} Am×nBn×l=O,则 R ( A ) + R ( B ) ≤ n R(\boldsymbol{A}) + R(\boldsymbol{B}) \le n R(A)+R(B)≤n。
证明 记 B = ( b 1 , b 2 , ⋯ , b l ) \boldsymbol{B} = (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) B=(b1,b2,⋯,bl),则
A ( b 1 , b 2 , ⋯ , b l ) = ( 0 , 0 , ⋯ , 0 ) \boldsymbol{A} (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) = (\boldsymbol{0},\boldsymbol{0},\cdots,\boldsymbol{0}) A(b1,b2,⋯,bl)=(0,0,⋯,0)
即
A b i = 0 ( i = 1 , 2 , ⋯ , l ) \boldsymbol{A} \boldsymbol{b}_i = \boldsymbol{0} \ (i=1,2,\cdots,l) Abi=0 (i=1,2,⋯,l)
表明矩阵 B \boldsymbol{B} B 的 l l l 个列向量都是齐次方程 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 的解。记方程 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 的解集为 S S S,由 b i ∈ S \boldsymbol{b}_i \in S bi∈S,知有 R ( b 1 , b 2 , ⋯ , b l ) ≤ R S R(\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) \le R_S R(b1,b2,⋯,bl)≤RS,即 R ( B ) ≤ R S R(\boldsymbol{B}) \le R_S R(B)≤RS。因为根据前置定理 3,有 R ( A ) + R S = n R(\boldsymbol{A}) + R_S = n R(A)+RS=n,所以 R ( A ) + R ( B ) ≤ n R(\boldsymbol{A}) + R(\boldsymbol{B}) \le n R(A)+R(B)≤n。
引理 若 n n n 元齐次线性方程组 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 与 B x = 0 \boldsymbol{B} \boldsymbol{x} = \boldsymbol{0} Bx=0 同解,则 R ( A ) = R ( B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) R(A)=R(B)。
证明 由于方程组 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 与 B x = 0 \boldsymbol{B} \boldsymbol{x} = \boldsymbol{0} Bx=0 有相同的解集,不妨将相同其设为 S S S。根据前置定理 3,有 R ( A ) = n − R S R(\boldsymbol{A}) = n - R_S R(A)=n−RS, R ( B ) = n − R S R(\boldsymbol{B}) = n - R_S R(B)=n−RS。因此 R ( A ) = R ( B ) R(A) = R(B) R(A)=R(B)。
根据引理,当矩阵 A \boldsymbol{A} A 与 B \boldsymbol{B} B 的列数相等时,要证 R ( A ) = R ( B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) R(A)=R(B),只需证明齐次方程 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 与 B x = 0 \boldsymbol{B} \boldsymbol{x} = \boldsymbol{0} Bx=0 同解。
定理 3 R ( A T A ) = R ( A ) R(\boldsymbol{A}^T \boldsymbol{A}) = R(\boldsymbol{A}) R(ATA)=R(A)。
证明 根据引理的结论,要证明 R ( A T A ) = R ( A ) R(\boldsymbol{A}^T \boldsymbol{A}) = R(\boldsymbol{A}) R(ATA)=R(A),只需证明 ( A T A ) x = 0 (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0} (ATA)x=0 与 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 同解。
若 x \boldsymbol{x} x 满足 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0,则有 A T ( A x ) = 0 \boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{x}) = \boldsymbol{0} AT(Ax)=0,即 ( A T A ) x = 0 (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0} (ATA)x=0。
若 x \boldsymbol{x} x 满足 ( A T A ) x = 0 (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0} (ATA)x=0,则有 x T ( A T A ) x = 0 \boldsymbol{x}^T (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = 0 xT(ATA)x=0,即 ( A x ) T ( A x ) = 0 (\boldsymbol{A} \boldsymbol{x})^T (\boldsymbol{A} \boldsymbol{x}) = 0 (Ax)T(Ax)=0。根据前置定理 4 可知, A x = 0 \boldsymbol{A} \boldsymbol{x} = 0 Ax=0。
因此,方程组 ( A T A ) x = 0 (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0} (ATA)x=0 与 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 同解,进而有 R ( A T A ) = R ( A ) R(\boldsymbol{A}^T \boldsymbol{A}) = R(\boldsymbol{A}) R(ATA)=R(A)。得证。