线性代数|矩阵乘法的秩的性质

前置定理 1 矩阵方程 A X = b \boldsymbol{A} \boldsymbol{X} = \boldsymbol{b} AX=b 有解的充分必要条件是 R ( A ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(A,B)

证明见 “线性方程组与矩阵的秩”。

前置性质 2  R ( A T ) = R ( A ) R(\boldsymbol{A}^T) = R(\boldsymbol{A}) R(AT)=R(A)

证明见 “矩阵的秩的性质”。

前置定理 3 设 m × n m \times n m×n 矩阵 A \boldsymbol{A} A 的秩 R ( A ) = r R(\boldsymbol{A}) = r R(A)=r,则 n n n 元齐次线性方程组 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 的解集 S S S 的秩 R S = n − r R_S = n - r RS=nr

证明见 “齐次线性方程组系数矩阵的秩与解集的秩”。

前置定理 4 矩阵 A = O \boldsymbol{A} = \boldsymbol{O} A=O 的充分必要条件是方阵 A T A = O \boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{O} ATA=O

证明见 “【证明】矩阵A=O的充要条件是方阵A^TA=O”。


性质 1  R ( A B ) ≤ min ⁡ { R ( A ) , R ( B ) } R(\boldsymbol{A} \boldsymbol{B}) \le \min \{R(\boldsymbol{A}),R(\boldsymbol{B})\} R(AB)min{R(A),R(B)}

证明 设 A B = C \boldsymbol{A} \boldsymbol{B} = \boldsymbol{C} AB=C,则知矩阵方程 A X = C \boldsymbol{A} \boldsymbol{X} = \boldsymbol{C} AX=C 有解 X = B \boldsymbol{X} = \boldsymbol{B} X=B。根据前置定理 1 有 R ( A ) = R ( A , C ) R(\boldsymbol{A}) = R(\boldsymbol{A}, \boldsymbol{C}) R(A)=R(A,C),从而有 R ( C ) ≤ R ( A , C ) R(\boldsymbol{C}) \le R(\boldsymbol{A},\boldsymbol{C}) R(C)R(A,C),进而有 R ( C ) ≤ R ( A ) R(\boldsymbol{C}) \le R(\boldsymbol{A}) R(C)R(A)

B T A T = C T \boldsymbol{B}^T \boldsymbol{A}^T = \boldsymbol{C}^T BTAT=CT,同理可证 R ( C T ) ≤ R ( B T ) R(\boldsymbol{C}^T) \le R(\boldsymbol{B}^T) R(CT)R(BT),根据前置性质 2,有 R ( C ) ≤ R ( B ) R(\boldsymbol{C}) \le R(\boldsymbol{B}) R(C)R(B)

综上所述, R ( C ) ≤ min ⁡ { R ( A ) , R ( B ) } R(\boldsymbol{C}) \le \min \{R(\boldsymbol{A}),R(\boldsymbol{B})\} R(C)min{R(A),R(B)},得证。

定理 2 若 A m × n B n × l = O \boldsymbol{A}_{m \times n} \boldsymbol{B}_{n \times l} = \boldsymbol{O} Am×nBn×l=O,则 R ( A ) + R ( B ) ≤ n R(\boldsymbol{A}) + R(\boldsymbol{B}) \le n R(A)+R(B)n

证明 记 B = ( b 1 , b 2 , ⋯   , b l ) \boldsymbol{B} = (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) B=(b1,b2,,bl),则
A ( b 1 , b 2 , ⋯   , b l ) = ( 0 , 0 , ⋯   , 0 ) \boldsymbol{A} (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) = (\boldsymbol{0},\boldsymbol{0},\cdots,\boldsymbol{0}) A(b1,b2,,bl)=(0,0,,0)

A b i = 0   ( i = 1 , 2 , ⋯   , l ) \boldsymbol{A} \boldsymbol{b}_i = \boldsymbol{0} \ (i=1,2,\cdots,l) Abi=0 (i=1,2,,l)
表明矩阵 B \boldsymbol{B} B l l l 个列向量都是齐次方程 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 的解。记方程 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 的解集为 S S S,由 b i ∈ S \boldsymbol{b}_i \in S biS,知有 R ( b 1 , b 2 , ⋯   , b l ) ≤ R S R(\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) \le R_S R(b1,b2,,bl)RS,即 R ( B ) ≤ R S R(\boldsymbol{B}) \le R_S R(B)RS。因为根据前置定理 3,有 R ( A ) + R S = n R(\boldsymbol{A}) + R_S = n R(A)+RS=n,所以 R ( A ) + R ( B ) ≤ n R(\boldsymbol{A}) + R(\boldsymbol{B}) \le n R(A)+R(B)n

引理 若 n n n 元齐次线性方程组 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 B x = 0 \boldsymbol{B} \boldsymbol{x} = \boldsymbol{0} Bx=0 同解,则 R ( A ) = R ( B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) R(A)=R(B)

证明 由于方程组 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 B x = 0 \boldsymbol{B} \boldsymbol{x} = \boldsymbol{0} Bx=0 有相同的解集,不妨将相同其设为 S S S。根据前置定理 3,有 R ( A ) = n − R S R(\boldsymbol{A}) = n - R_S R(A)=nRS R ( B ) = n − R S R(\boldsymbol{B}) = n - R_S R(B)=nRS。因此 R ( A ) = R ( B ) R(A) = R(B) R(A)=R(B)

根据引理,当矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 的列数相等时,要证 R ( A ) = R ( B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) R(A)=R(B),只需证明齐次方程 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 B x = 0 \boldsymbol{B} \boldsymbol{x} = \boldsymbol{0} Bx=0 同解。

定理 3  R ( A T A ) = R ( A ) R(\boldsymbol{A}^T \boldsymbol{A}) = R(\boldsymbol{A}) R(ATA)=R(A)

证明 根据引理的结论,要证明 R ( A T A ) = R ( A ) R(\boldsymbol{A}^T \boldsymbol{A}) = R(\boldsymbol{A}) R(ATA)=R(A),只需证明 ( A T A ) x = 0 (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0} (ATA)x=0 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 同解。

x \boldsymbol{x} x 满足 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0,则有 A T ( A x ) = 0 \boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{x}) = \boldsymbol{0} AT(Ax)=0,即 ( A T A ) x = 0 (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0} (ATA)x=0

x \boldsymbol{x} x 满足 ( A T A ) x = 0 (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0} (ATA)x=0,则有 x T ( A T A ) x = 0 \boldsymbol{x}^T (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = 0 xT(ATA)x=0,即 ( A x ) T ( A x ) = 0 (\boldsymbol{A} \boldsymbol{x})^T (\boldsymbol{A} \boldsymbol{x}) = 0 (Ax)T(Ax)=0。根据前置定理 4 可知, A x = 0 \boldsymbol{A} \boldsymbol{x} = 0 Ax=0

因此,方程组 ( A T A ) x = 0 (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0} (ATA)x=0 A x = 0 \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} Ax=0 同解,进而有 R ( A T A ) = R ( A ) R(\boldsymbol{A}^T \boldsymbol{A}) = R(\boldsymbol{A}) R(ATA)=R(A)。得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值