线性代数|证明:线性变换在两个基下的矩阵相似

前置定义 1(基变换公式、过渡矩阵) 设 α 1 , ⋯   , α n \boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n α1,,αn β 1 , ⋯   , β n \boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_n β1,,βn 是线性空间 V n V_n Vn 中的两个基,
{ β 1 = p 11 α 1 + p 21 α 2 + ⋯ + p n 1 α n β 2 = p 12 α 1 + p 22 α 2 + ⋯ + p n 2 α n ⋯ β n = p 1 n α 1 + p 2 n α 2 + ⋯ + p n n α n \left\{ \begin{aligned} & \boldsymbol{\beta}_1 = p_{11} \boldsymbol{\alpha}_1 + p_{21} \boldsymbol{\alpha}_2 + \cdots + p_{n1} \boldsymbol{\alpha}_n \\ & \boldsymbol{\beta}_2 = p_{12} \boldsymbol{\alpha}_1 + p_{22} \boldsymbol{\alpha}_2 + \cdots + p_{n2} \boldsymbol{\alpha}_n \\ & \cdots \\ & \boldsymbol{\beta}_n = p_{1n} \boldsymbol{\alpha}_1 + p_{2n} \boldsymbol{\alpha}_2 + \cdots + p_{nn} \boldsymbol{\alpha}_n \\ \end{aligned} \right. β1=p11α1+p21α2++pn1αnβ2=p12α1+p22α2++pn2αnβn=p1nα1+p2nα2++pnnαn
α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn n n n 个有序向量记作 ( α 1 , α 2 , ⋯   , α n ) (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) (α1,α2,,αn),记 n n n 阶矩阵 P = ( p i j ) \boldsymbol{P} = (p_{ij}) P=(pij),利用向量和矩阵的形式, ( 1 ) (1) (1) 式可表示为
( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α n ) P (\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n) = (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) \boldsymbol{P} (β1,β2,,βn)=(α1,α2,,αn)P
( 1 ) (1) (1) 式或 ( 2 ) (2) (2) 式称为 基变换公式,矩阵 P \boldsymbol{P} P 称为由基 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn 到基 β 1 , β 2 , ⋯   , β n \boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n β1,β2,,βn 的过渡矩阵。

定义详见 “基变换与坐标变换”。

前置定义 2 设 T T T 是线性空间 V n V_n Vn 中的线性变换,在 V n V_n Vn 中取定一个基 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn,如果这个基在变换 T T T 下的像(用这个基线性表示)为
{ T ( α 1 ) = a 11 α 1 + a 21 α 2 + ⋯ + a n 1 α n T ( α 2 ) = a 12 α 1 + a 22 α 2 + ⋯ + a n 2 α n ⋯ ⋯ ⋯ T ( α n ) = a 1 n α 1 + a 2 n α 2 + ⋯ + a n n α n \left\{ \begin{aligned} & T(\boldsymbol{\alpha}_1) = a_{11} \boldsymbol{\alpha}_1 + a_{21} \boldsymbol{\alpha}_2 + \cdots + a_{n1} \boldsymbol{\alpha}_n \\ & T(\boldsymbol{\alpha}_2) = a_{12} \boldsymbol{\alpha}_1 + a_{22} \boldsymbol{\alpha}_2 + \cdots + a_{n2} \boldsymbol{\alpha}_n \\ & \cdots \cdots \cdots \\ & T(\boldsymbol{\alpha}_n) = a_{1n} \boldsymbol{\alpha}_1 + a_{2n} \boldsymbol{\alpha}_2 + \cdots + a_{nn} \boldsymbol{\alpha}_n \\ \end{aligned} \right. T(α1)=a11α1+a21α2++an1αnT(α2)=a12α1+a22α2++an2αn⋯⋯⋯T(αn)=a1nα1+a2nα2++annαn
T ( α 1 , α 2 , ⋯   , α n ) = ( T ( α 1 ) , T ( α 2 ) , ⋯   , T ( α n ) ) T(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) = (T(\boldsymbol{\alpha}_1), T(\boldsymbol{\alpha}_2), \cdots, T(\boldsymbol{\alpha}_n)) T(α1,α2,,αn)=(T(α1),T(α2),,T(αn)),则上式 ( 6 ) (6) (6) 可表示为
T ( α 1 , α 2 , ⋯   , α n ) = ( α 1 , α 2 , ⋯   , α n ) A T(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) = (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) \boldsymbol{A} T(α1,α2,,αn)=(α1,α2,,αn)A
其中
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) \boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{pmatrix} A= a11a21an1a12a22an2a1na2nann
那么, A \boldsymbol{A} A 就称为 线性变换 T T T 在基 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn 下的矩阵

定义详见 “【推导】线性变换的矩阵表达式”。


定理 1 设线性空间 V n V_n Vn 中取定两个基
α 1 , α 2 , ⋯   , α n ; β 1 , β 2 , ⋯   , β n \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n; \hspace{1em} \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n α1,α2,,αn;β1,β2,,βn
由基 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n α1,α2,,αn 到基 β 1 , β 2 , ⋯   , β n \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n β1,β2,,βn 的过渡矩阵为 P \boldsymbol{P} P V n V_n Vn 中的线性变换 T T T 在这两个基下的矩阵依次为 A \boldsymbol{A} A B \boldsymbol{B} B,那么 B = P − 1 A P \boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} B=P1AP

证明 因为基 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n α1,α2,,αn 到基 β 1 , β 2 , ⋯   , β n \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n β1,β2,,βn 的过渡矩阵为 P \boldsymbol{P} P,所以根据前置定义 1,有
( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α n ) P (1) (\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n) = (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) \boldsymbol{P} \tag{1} (β1,β2,,βn)=(α1,α2,,αn)P(1)
由于 β 1 , β 2 , ⋯   , β n \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n β1,β2,,βn 线性无关,所以矩阵 P \boldsymbol{P} P 可逆。有
( α 1 , α 2 , ⋯   , α n ) = ( β 1 , β 2 , ⋯   , β n ) P − 1 (2) (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) = (\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n) \boldsymbol{P}^{-1} \tag{2} (α1,α2,,αn)=(β1,β2,,βn)P1(2)
因为线性变换 T T T 在这两个基下的矩阵依次为 A \boldsymbol{A} A B \boldsymbol{B} B,所以根据前置定义 2,有
T ( α 1 , α 2 , ⋯   , α n ) = ( α 1 , α 2 , ⋯   , α n ) A (3) T(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) = (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) \boldsymbol{A} \tag{3} T(α1,α2,,αn)=(α1,α2,,αn)A(3)

T ( β 1 , β 2 , ⋯   , β n ) = ( β 1 , β 2 , ⋯   , β n ) B (4) T(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n) = (\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n) \boldsymbol{B} \tag{4} T(β1,β2,,βn)=(β1,β2,,βn)B(4)

于是,依次代入式 ( 4 ) (4) (4)、式 ( 1 ) (1) (1)、式 ( 3 ) (3) (3)、式 ( 2 ) (2) (2),有
( β 1 , β 2 , ⋯   , β n ) B = T ( β 1 , β 2 , ⋯   , β n ) = T [ ( α 1 , α 2 , ⋯   , α n ) P ] = [ T ( α 1 , α 2 , ⋯   , α n ) ] P = ( α 1 , α 2 , ⋯   , α n ) A P = ( β 1 , β 2 , ⋯   , β n ) P − 1 A P \begin{aligned} (\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n) \boldsymbol{B} & = T(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n) \\ & = T[(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) \boldsymbol{P}] \\ & = [T(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n)] \boldsymbol{P} \\ & = (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n) \boldsymbol{A} \boldsymbol{P} \\ & = (\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_n) \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} \end{aligned} (β1,β2,,βn)B=T(β1,β2,,βn)=T[(α1,α2,,αn)P]=[T(α1,α2,,αn)]P=(α1,α2,,αn)AP=(β1,β2,,βn)P1AP
因为 β 1 , β 2 , ⋯   , β n \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n β1,β2,,βn 线性无关,所以
B = P − 1 A P \boldsymbol{B} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} B=P1AP
得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值