数据分析|Fisher-Yates 洗牌算法(原地)

应用场景

随机打乱一个已存在于内存中的数组。

算法步骤
  • 不妨设有待乱序的长度为 n n n 的数组 L L L
  • 遍历 n n n 次,在第 i i i 次循环中( 0 ≤ i < n 0 \le i < n 0i<n):
    • [ i , n ) [i,n) [i,n) 中随机抽取一个下标 j j j
    • 将第 i i i 个元素与第 j j j 个元素交换。

其中数组 L L L 中的第 k   ( k ≥ i ) k \ (k \ge i) k (ki) 个元素为待乱序的数组,其长度为 n − i n-i ni; 数组 L L L 中的第 l   ( l < i ) l \ (l < i) l (l<i) 个元素为已乱序的数组,其长度为 i i i n n n 次遍历完成后,数组 L L L 已被乱序。

算法证明

结论 原数组 L L L 中的任意位置的数,被移动到乱序后数组的任意位置的概率是相同的。

证明 根据算法步骤,显然有,原数组中第 i i i 个位置的元素( 0 ≤ i < n 0 \le i < n 0i<n)移动到乱序后数组第 j j j 个位置( 0 ≤ j < n 0 \le j < n 0j<n) 的概率为
P ( i , j ) = n − 1 n × n − 2 n − 1 × ⋯ × n − i n − i + 1 × 1 n − i = 1 n P(i,j) = \frac{n-1}{n} \times \frac{n-2}{n-1} \times \cdots \times \frac{n-i}{n-i+1} \times \frac{1}{n-i} = \frac{1}{n} P(i,j)=nn1×n1n2××ni+1ni×ni1=n1
得证。

代码实现
import random
from typing import Any, List, NoReturn


def fisher_yates(nums: List[Any]) -> NoReturn:
    """Fisher-Yates 洗牌算法,原地乱序 nums 数组

    Parameters
    ----------
    nums : List[Any]
        待乱序数组
    """
    for i in range(len(nums)):
        j = random.randrange(i, len(nums))
        nums[i], nums[j] = nums[j], nums[i]

测试用例:

>>> nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> fisher_yates(nums)
>>> nums
[3, 10, 8, 2, 1, 4, 7, 9, 6, 5]
>>> fisher_yates(nums)
>>> nums
[2, 10, 8, 1, 4, 7, 9, 3, 5, 6]
复杂度分析
  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 为待乱序数组长度。
  • 空间复杂度: O ( 1 ) O(1) O(1),原地乱序 nums 数组,仅使用 ij 及调换 nums[i]nums[j] 时使用的共 3 个中间变量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值