应用场景
随机打乱一个已存在于内存中的数组。
算法步骤
- 不妨设有待乱序的长度为 n n n 的数组 L L L;
- 遍历
n
n
n 次,在第
i
i
i 次循环中(
0
≤
i
<
n
0 \le i < n
0≤i<n):
- 在 [ i , n ) [i,n) [i,n) 中随机抽取一个下标 j j j;
- 将第 i i i 个元素与第 j j j 个元素交换。
其中数组 L L L 中的第 k ( k ≥ i ) k \ (k \ge i) k (k≥i) 个元素为待乱序的数组,其长度为 n − i n-i n−i; 数组 L L L 中的第 l ( l < i ) l \ (l < i) l (l<i) 个元素为已乱序的数组,其长度为 i i i。 n n n 次遍历完成后,数组 L L L 已被乱序。
算法证明
结论 原数组 L L L 中的任意位置的数,被移动到乱序后数组的任意位置的概率是相同的。
证明 根据算法步骤,显然有,原数组中第
i
i
i 个位置的元素(
0
≤
i
<
n
0 \le i < n
0≤i<n)移动到乱序后数组第
j
j
j 个位置(
0
≤
j
<
n
0 \le j < n
0≤j<n) 的概率为
P
(
i
,
j
)
=
n
−
1
n
×
n
−
2
n
−
1
×
⋯
×
n
−
i
n
−
i
+
1
×
1
n
−
i
=
1
n
P(i,j) = \frac{n-1}{n} \times \frac{n-2}{n-1} \times \cdots \times \frac{n-i}{n-i+1} \times \frac{1}{n-i} = \frac{1}{n}
P(i,j)=nn−1×n−1n−2×⋯×n−i+1n−i×n−i1=n1
得证。
代码实现
import random
from typing import Any, List, NoReturn
def fisher_yates(nums: List[Any]) -> NoReturn:
"""Fisher-Yates 洗牌算法,原地乱序 nums 数组
Parameters
----------
nums : List[Any]
待乱序数组
"""
for i in range(len(nums)):
j = random.randrange(i, len(nums))
nums[i], nums[j] = nums[j], nums[i]
测试用例:
>>> nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> fisher_yates(nums)
>>> nums
[3, 10, 8, 2, 1, 4, 7, 9, 6, 5]
>>> fisher_yates(nums)
>>> nums
[2, 10, 8, 1, 4, 7, 9, 3, 5, 6]
复杂度分析
- 时间复杂度: O ( n ) O(n) O(n),其中 n n n 为待乱序数组长度。
- 空间复杂度:
O
(
1
)
O(1)
O(1),原地乱序 nums 数组,仅使用
i
、j
及调换nums[i]
和nums[j]
时使用的共 3 个中间变量。