【约数】求最大公约数——递归

【约数】求最大公约数——递归

请使用递归算法计算正整数n和m的最大公约数GCD(n,m)。
G C D ( n , m ) = { = m , 当 m < = n 且 n m o d m = 0 = G C D ( m , n ) , 当 n < m 时 = G C D ( m , n m o d    m ) , 其他 GCD(n,m)=\left\{\begin{matrix} =m,当 m<=n 且 n mod m =0\\ =GCD(m,n),当n<m时\\ =GCD(m,n \mod m),其他 \end{matrix}\right. GCD(n,m)= =m,m<=nnmodm=0=GCD(m,n),n<m=GCD(m,nmodm),其他

输入:

n m

输出:

n和m的最大公约数

样例:

序号测试输入期待的输出额外进程
124 48↵24↵0
213 15↵1↵0

思路

怎么说呢,其实只要理解了什么是递归,这道题就是把题目抄一遍
G C D ( n , m ) = { = m , 当 m < = n 且 n m o d m = 0 = G C D ( m , n ) , 当 n < m 时 = G C D ( m , n m o d    m ) , 其他 GCD(n,m)=\left\{\begin{matrix} =m,当 m<=n 且 n mod m =0\\ =GCD(m,n),当n<m时\\ =GCD(m,n \mod m),其他 \end{matrix}\right. GCD(n,m)= =m,m<=nnmodm=0=GCD(m,n),n<m=GCD(m,nmodm),其他

代码

#include <stdio.h>  
int GCD(int n, int m)
{
    if (m <= n && n % m == 0) return m;
    else if (n < m)return GCD(m, n);
    else return GCD(m, n % m);
}
int main()
{
    int a, b;
    scanf("%d %d", &a, &b);
    printf("%d\n", GCD(a, b));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值