读论文系列:Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding

读论文系列:Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding

1️⃣ 资料

  1. 说明:Set5—超分辨率重建数据集,老牌经典,简单易用。
  2. 官方 github:
  3. 官网:http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html

省流:直接从这里下载 https://figshare.com/articles/dataset/BSD100_Set5_Set14_Urban100/21586188 ,后边的都不用看了。数据集里边不同倍数进行下采样的图片,目录很清晰。

2️⃣ AI 一起读论文

1. 🤖这篇文章写了什么

这篇论文提出了一种基于非负邻域嵌入的单图像超分辨率算法。该算法属于基于单图像示例的超分辨率算法家族,因为它使用低分辨率(LR)和高分辨率(HR)训练块对的字典来推断未知的高分辨率细节。

主要贡献

  • 低复杂度: 该算法通过以下三个关键方面实现了低复杂度:
    • 紧凑有效的块表示: 使用中心亮度值作为唯一的低成本特征,减少了计算量和内存消耗。
    • 精确的块估计: 使用非负最小二乘(NNLS)方法计算权重,避免了传统方法的性能下降问题。
    • 紧凑的外部字典: 使用预先构建的外部字典,允许一步放大,从而降低了算法的复杂性。
  • 良好的性能: 该算法在视觉上取得了与现有先进方法相当的结果,并且在计算时间上有了显著的降低。

算法流程

  1. 将输入的低分辨率图像分割成与字典中低分辨率块相同大小的块,并将其转换为特征向量。
  2. 对于每个低分辨率特征向量:
    • 找到字典中与其最接近的K个邻居。
    • 使用NNLS方法计算这些邻居的权重。
    • 使用相同的权重对字典中相应的高分辨率块进行加权组合,重建高分辨率输出块特征向量。
  3. 将所有高分辨率块特征向量转换回像素块,并将它们组合成输出图像。
  4. (可选)使用迭代后投影(IBP)对超分辨率图像进行微调,以确保其与输入低分辨率图像一致。

实验结果

  • 与其他单图像超分辨率算法相比,该算法在视觉质量和计算时间方面都取得了良好的性能。
  • 中心亮度值特征在性能上优于其他特征表示方法。
  • NNLS方法在计算权重方面比传统的SUM1-LS方法更有效。

未来工作

  • 探索更有效的邻域选择方法。
  • 研究基于低分辨率和高分辨率局部回归的超分辨率方法。
  • 考虑特征选择和融合的问题。

总结
该论文提出的基于非负邻域嵌入的单图像超分辨率算法在性能和复杂度方面取得了良好的平衡,为单图像超分辨率技术提供了新的思路。

3️⃣ 我的笔记

本文提出了一个算法,来进行分辨率重建。文章使用了几张 demo 来进行测试,这就是传说中的 Set5 嘛。。

下面是论文中的指标评测环节(所以就是在几张图上测试一下,具体分数已经不重要了,主要是看看有什么图)
在这里插入图片描述

  • 18
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值