拓扑排序最主要的就是依靠入度进行排序,至于入度是什么,这是一个传送门 点开看看就好了。以这道题为例,裁判不知道队伍的成绩,只知道胜负,自然获胜的越多就越靠前,那么我们需要开一个二维数组来记录谁打败了谁,代码中我用了w表示win,l表示lose,那么vis[w][l]就表示w打败了l,把这个标记为1,说明他们两个比过了,然后我们还需要一个数组来记录入度,既然l输了那么就让dep[l]++,表示l的入度+了1,然后我们按入度从小到大进行输出就好了,因为题目中说明了输入的数据确保是正确的且只有一种答案,所以我们就不需要考虑如果a赢了b,b赢了c,c赢了a等等其他的乱七八糟的情况了。大概思路就是这样,具体怎么实现看代码吧。
AC代码:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int MAXN = 505;
bool vis[MAXN][MAXN]; // 用于标记谁打败了谁
int dep[MAXN]; // 存入度
int w,l; // win\lose
int n,m;
void TopoSort(int n){
int flag;
for(int i=1;i<=n;i++){ // 因为编号为1-n
for(int j=1;j<=n;j++){
if(dep[j] == 0){ // 找到入度为0的点
printf("%d%c",j,i == n? '\n' : ' '); // 输出
flag = j; // 标记这个点
dep[j]--; // 将其入度-1
break; // 跳出循环进入下一个循环
}
}
for(int j=1;j<=n;j++){ // 寻找被flag打败的点
if(vis[flag][j]){ // 如果flag把j打败了
vis[flag][j] = false; // 标记找到过
dep[j]--; // j入度-1
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m)){
memset(vis,0,sizeof(vis)); // 初始化
memset(dep,0,sizeof(dep));
for(int i=0;i<m;i++){
scanf("%d%d",&w,&l);
if(!vis[w][l]){ // 查重
vis[w][l] = true; // 标记w赢了l
dep[l]++; // 失败者l的入度+1
}
}
TopoSort(n);
}
return 0;
}
/***
[来源] HDU 1285
[题目] 确定比赛名次
[思路]
拓扑排序基础题
[输入]
4 3
1 2
2 3
4 3
[输出]
1 2 4 3
*/
这样写时间复杂度会有点高,所以我们可以对拓扑排序用优先队列进行优化。
AC代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int MAXN = 505;
bool vis[MAXN][MAXN]; // 用于标记谁打败了谁
int dep[MAXN]; // 存入度
int w,l; // win\lose
int n,m;
priority_queue<int,vector<int>,greater<int> > q; // 优先队列 从小到大排序
void TopoSort(int n){
for(int i=1;i<=n;i++){ // 遍历 入度为0的入队
if(dep[i]==0){
q.push(i);
}
}
int temp = 1; // 标记输出结果后面是否输出空格
while(!q.empty()){
int ans = q.top();
q.pop();
if(temp != n){printf("%d ",ans);temp++;}
else printf("%d\n",ans);
for(int i=1;i<=n;i++){ // 找被ans打败的点
if(vis[ans][i]){
if(--dep[i]==0){ // 找到后先将其入度-1 如果-1后入度为0将其入队
q.push(i);
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m)){
memset(vis,0,sizeof(vis));
memset(dep,0,sizeof(dep));
for(int i=0;i<m;i++){
scanf("%d%d",&w,&l);
if(!vis[w][l]){
vis[w][l] = true;
dep[l]++;
}
}
TopoSort(n);
}
return 0;
}