最长单调递增子序列


       LIS(Longest Increasing Subsequence)问题也是一个经典的动态规划问题,最简单粗暴的方法就是暴力去枚举了,然后就是用动态规划的方法,首先我们要用dp数组去存每一个数前的最长单调递增序列,先初始化dp[]为1,我们要先遍历一遍数组,然后再用一个for循环遍历i之前的数,如果有pre[j]<pre[i],则有dp[i] = max(dp[i],dp[j]+1),这个也就是LIS的核心代码(动态转移方程),然后遍历dp求出的最大值即为最长单调递增子序列的长度。

实现代码O(n^2):

#include <iostream>
#include <cstdio>
#include <cstring>
#define Max(a,b) a>b?a:b
using namespace std;
int pre[100005];
int dp[100005];
int n;

int main()
{
	while(~scanf("%d",&n)){
		for(int i=0;i<n;i++){
			scanf("%d",&pre[i]);
			dp[i] = 1;
		}
		for(int i=1;i<n;i++){
			for(int j=0;j<i;j++){
				if(pre[j] < pre[i])
					dp[i] = Max(dp[i],dp[j] + 1);
			}
		}
		int ans = -1;
		for(int i=0;i<n;i++){
			if(ans < dp[i])ans = dp[i];
		}
		printf("%d\n",ans);
	}
	return 0;
}


       上面这种方法的时间复杂度为O(n^2),我们还可以用二分的方法对其优化。因为我们只需要求出最长单调递增子序列的长度,所以对其子序列没有要求,我们可以用一个数组来模拟栈,先将第一个数加入到数组中,然后第二个数和这个数(栈顶)比较,如果这个数比栈顶的数大,就把它存入到数组中,如果这个数比栈顶的数小的话,我们就从栈中找第一个比这个数大的数,然后用这个数替换掉第一个比这个数大的数,因为这个数组中的数都是单调的,所以在查找时用二分查找,就把时间复杂度降到了log(n)。可能光看字面理解有点不太好理解,可以去看一下这篇博客,感觉很好理解传送门


实现代码O(n*log(n)):

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int main()
{
	int n,m,num;
	int pre[100005];
	while(~scanf("%d",&n)){
		num = 0;
		pre[0] = -100005;
		for(int i=0;i<n;i++){
			scanf("%d",&m);
			if(m > pre[num])pre[++num] = m;
			else{
				int l = 1,r = num,Mid;
				while(l <= r){
					Mid = (l + r) / 2;
					if(m > pre[Mid]) l = Mid + 1;
					else r = Mid - 1;
				}
				pre[l] = m;
			}
		}
		printf("%d\n",num);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值