poj_1088

    poj_1088也可以说的上是经典的DP问题了。

    DP的核心思想是审时度势。过去的最优+当下的最优,有点迭代的意思。所以很多题都可以考虑递归。只是递归太耗资源,不一定是最好的选择,所以要考虑改进。这道题可以作为一个改进的参考。

  //-------------------------------------------------------------------------------------------------------------------------------------------- 

#include <iostream>
using namespace std;

int max(int a,int b,int c,int d)
{
    int t1 = a>b?a:b;
    int t2 = c>d?c:d;
    return t1>t2?t1:t2;
}

int re[101][101];
int h[101][101];
int R,C;
int DP(int i,int j)
{
    int t1=0,t2=0,t3=0,t4=0;
    if(re[i][j] > 0)
        return re[i][j];
    re[i][j] = 1;
    if(i > 1)
    {
        if(h[i][j] > h[i-1][j])
        {
            t1 = DP(i-1,j);
        }
    }
    if(i < R)
    {
        if(h[i][j] > h[i+1][j])
        {
            t2 = DP(i+1,j);
        }
    }
    if(j > 1)
    {
        if(h[i][j-1] < h[i][j])
        {
            t3 = DP(i,j-1);
        }
    }
    if(j < C)
    {
        if(h[i][j+1] < h[i][j])
        {
            t4 = DP(i,j+1);
        }
    }

    re[i][j] = max(t1,t2,t3,t4)+1;
    return re[i][j];
}

int main()
{
    int i,j;
    cin>>R>>C;
    for(i = 1; i <= 101 ;i++)
        for(j = 1;j <= 101;j++)
            re[i][j] = 0;
    for(i = 1; i <= R ;i++)
        for(j = 1;j <= C;j++)
            cin>>h[i][j];
    int t1,t2,t3,t4;
    int MAX;
    for(i = 1; i <= R ;i++)
        for(j = 1;j <= C;j++)
            {
                DP(i,j);
            }
    MAX = -1;
    for(i = 1;i <= R ;i++)
        for(j = 1;j <= C;j++)
        {
            if(re[i][j] > MAX)
            MAX = re[i][j];
        }
    cout<<MAX<<endl;

    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值