LeetCode_0077题解and回溯应用之组合问题总结

本文详细讲解了如何使用回溯法解决LeetCode第77题——从n个数中选取k个的不同组合,通过模板展示核心思想,并提供了代码实现。通过实例演示,帮助读者理解回溯法在组合问题中的应用。

LeetCode_0077题解 回溯应用之组合问题
0077. Combinations
Given two integers n and k, return all possible combinations of k numbers out of the range [1, n].
You may return the answer in any order.
Example 1:

Input: n = 4, k = 2
Output:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
Example 2:

Input: n = 1, k = 1
Output: [[1]]

Constraints:

1 <= n <= 20
1 <= k <= n

//内功修炼之回溯法的核心:
    /* (1)所有回溯法的问题都可以抽象为树形结构
     * (2)回溯法解决的都是在集合中递归查子集, 集合的大小就构成了树的宽度, \
      递归的深度,都构成的树的深度。
     * (3)for循环可以理解是横向遍历, 其内部的backtracking(递归)就是纵向遍历
     *
     * */
    //回溯法套路模板: 
    /*
     * (1)回溯函数模板返回值以及参数: 返回值 bk(参数){  }
     *      本题: void backTracking(int n, int k, int startIndex){}
     * (2)回溯函数终止条件: if(可以终止){存结果 + return}
     *      本题: path.size() == k
     * (3)回溯搜索的遍历过程: for(树的某一层元素集合){ 处理节点; 递归; 回溯处理结果; }
     *      本题: for(int i = startIndex; i <= n; ++i){ //路径+1 }
     * (4)剪枝(升华)
     * */
    //回溯的剪枝
    /*
     * 一般可以在回溯函数的开头, 也可以放到for 循环里面
     * 剪枝思路: 因为"for(树的某一层元素集合)", 思考, 这个集合是不是太大了?
     * 剪枝本质: 剪枝就是剪树节点的子孩子
     *
     */

代码

class Solution {
public:
    vector<vector<int>> combine(int n, int k) {
        result.clear();
        path.clear();
        backTracking(n, k, 1);
        /*for_each(vec.begin(), vec.end(), [](auto &elem){
             for_each(elem.begin(), elem.end(), [](auto &x){
                      cout << x << " ";
                      });
             cout << endl;
             });*/

        return result;
    }
    void backTracking(int n, int k, int startIndex){
        //剪枝思考:
        //"startIndex包括进去varr[startIndex], 还有多少元素" vs "path的大小size()还需要多少元素到k"
        //传入4 3 
        //比较:
        //比如 4  - 3 + 1 =  2 vs  3 - 0(path.size()) = 能放 ;   3 2
        //剪枝方式一(方式一二差不多, 方式二看着整洁点):
        /* if(n - startIndex + 1 < k - (int)path.size()){ */
        /*     return; */
        /* } */
        if((int)path.size() == k){
            result.push_back(path);        
            return;
        }
        //剪枝方式二:
        for(int i = startIndex; i <= n + 1 - k + (int)path.size(); ++i){
            path.push_back(i);
            backTracking(n, k, i + 1);
            path.pop_back();
        }
    }
private:
    vector< vector<int> > result;//存放符合条件的各个组合结果的集合
    vector< int > path;//存放符合条件的单个组合结果


};

//若人静坐一须臾, 胜造恒沙七宝塔

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值