数据结构 二叉树(binarytree)的实现

我们先来介绍一些关于树的概念:

节点:结点包含数据和指向其它节点的指针。
根节点:树第一个结点称为根节点。
结点的度:结点拥有的子节点个数。
叶节点:没有子节点的节点(度为0)。
父子节点:一个节点father指向另一个节点child,则child为孩子节点,father为父亲节点 。
兄弟节点:具有相同父节点的节点互为兄弟节点。
节点的祖先:从根节点开始到该节点所经的所有节点都可以称为该节点的祖先。
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
树的高度:树中距离根节点最远节点的路径长度。
如下图所示

这里写图片描述

而二叉树就是每个父节点最多有两个子节点的树。
完全二叉树:
这里写图片描述

满二叉树:
这里写图片描述
从图中可以看出,满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树。

#include<iostream>
#include<assert.h>
#include<queue>
#include<stack>
using namespace std;


template<class T>
struct BinaryTreeNode
{
    T _data;
    BinaryTreeNode<T>* _left;
    BinaryTreeNode<T>* _right;

    BinaryTreeNode(const T& x)
        :_data(x)
        , _left(NULL)
        , _right(NULL)
    {}
};

template<class T>
class BinaryTree
{
    typedef BinaryTreeNode<T> Node;
public:
    BinaryTree()
        :_root(NULL)
    {}

    BinaryTree(int* a, size_t n, const T& invalid)
    {
        size_t index = 0;
        _root = _CreateTree(a, n, invalid, index);
    }

    ~BinaryTree()
    {
        _Destroy(_root);
    }

    void PreOrder()
    {
        _PreOrder(_root);
        cout << endl;
    }

    void InOrder()
    {
        _InOrder(_root);
        cout << endl;
    }

    void PostOrder()
    {
        _PostOrder(_root);
        cout << endl;
    }

    //层序遍历(用队列)
    void LeefOrder()
    {
        queue<Node*> q;
        if (_root)
        {
            q.push(_root);
        }
        while (!q.empty())
        {
            Node* front = q.front();
            q.pop();
            cout << front->_data << " ";
            if (front->_left)
                q.push(front->_left);
            if (front->_right)
                q.push(front->_right);
        }
        cout << endl;
    }

    //求叶子节点个数
    size_t LeafSize()
    {
        return _LeafSize(_root);
    }

    size_t KLeafSize(size_t k)
    {
        assert(k > 0);
        return _KleafSize(_root,k);
    }

    size_t Size()
    {
        return _Size(_root);
    }

    //非递归前序遍历(用栈)
    void PreOrderNoR()
    {
        _PreOrderNoR(_root);
    }

    //非递归中序遍历
    void InOrderNoR()
    {
        _InOrderNoR(_root);
    }

    //非递归后续遍历
    void PostOrderNoR()
    {
        _PostOrderNoR(_root);
    }

    //在二叉树中查找某个数
    Node* Find(const T& data)
    {
        return _Find(_root, data);
    }

    //求二叉树的深度
    size_t Depth()
    {
        return _Depth(_root);
    }

    //判断一棵树是否是完全二叉树
    bool JustTree()
    {
        return _JustTree(_root);
    }
protected:
    Node* _CreateTree(int* a, size_t n, const T& invalid, size_t &index)
    {
        Node* root = NULL;
        if (index < n && a[index] != invalid)
        {
            //先要创建节点
            root = new Node(a[index]);
            root->_left = _CreateTree(a, n, invalid, ++index);
            root->_right = _CreateTree(a, n,invalid, ++index);
        }
        return root;
    }

    //后续遍历销毁
    void _Destroy(Node* root)
    {
        if (root == NULL)
            return;
        _Destroy(root->_left);
        _Destroy(root->_right);
        delete root;
    }

    //递归前序遍历
    void _PreOrder(Node* root)
    {
        if (root == NULL)
            return;
        else
        {
            cout << root->_data << " ";
            _PreOrder(root->_left);
            _PreOrder(root->_right);
        }
    }

    //递归中序遍历
    void _InOrder(Node* root)
    {
        if (root == NULL)
            return;
        else
        {
            _InOrder(root->_left);
            cout << root->_data << " ";
            _InOrder(root->_right);
        }
    }

    //递归后续遍历
    void _PostOrder(Node* root)
    {
        if (root == NULL)
            return;
        _PostOrder(root->_left);
        _PostOrder(root->_right);
        cout << root->_data << " ";
    }

    //求叶子节点个数
    size_t _LeafSize(Node* root)
    {
        if (root == NULL)
            return 0;
        if (root->_left == NULL && root->_right == NULL)
            return 1;
        return _LeafSize(root->_left) + _LeafSize(root->_right);
    }

    //求第K层节点个数
    size_t _KLeafSize(Node* root,size_t k)
    {
        if (root == NULL)
            return 0;
        if (k == 1)
            return 1;
        else
            return _KLeafSize(root->_left, k - 1) + _KLeafSize(root->_right, k - 1);
    }

    size_t _Size(Node* root)
    {
        if (root == NULL)
            return 0;
        else
            return _Size(root->_left) + _Size(root->_right) + 1;
    }

    //前序非递归
    void _PreOrderNoR(Node* root)
    {
        stack<Node*> s;
        Node* cur = _root;
        while (!s.empty() || cur)
        {
            while (cur)
            {
                cout << cur->_data << " ";
                s.push(cur);
                cur = cur->_left;
            }
            //此时左子树遍历完
            Node* top = s.top();
            s.pop();

            //子问题
            cur = top->_right;
        }
        cout << endl;
    }

    //非递归中序遍历
    void _InOrderNoR(Node* root)
    {
        stack<Node*> s;
        Node* cur = root;
        while (!s.empty() || cur)
        {
            while (cur)
            {
                s.push(cur);
                cur = cur->_left;
            }//一直到最左节点
            Node* top = s.top();
            cout << top->_data << " ";
            s.pop();
            cur = top->_right;
        }
        cout << endl;
    }

    void _PostOrderNoR(Node* root)
    {
        Node* cur = root;
        stack<Node*> s;
        Node* prev = NULL;
        while (!s.empty() || cur)
        {
            while (cur)
            {
                s.push(cur);
                cur = cur->_left;
            }
            Node* top = s.top();
            if (top->_right == NULL || top->_right == prev)
            {
                cout << top->_data << " ";
                prev = top;
                s.pop();
            }
            else
            {
                cur = top->_right;
            }
        }
        cout << endl;
    }

    Node* _Find(Node* root, const T& data)
    {
        if (root == NULL)
            return NULL;
        if (root->_data == data)
            return root;
        Node* left = _Find(root->_left, data);
        if (left)
            return left;
        Node* right = _Find(root->_right, data);
        if (right)
            return right;
        return NULL;
    }

    size_t _Depth(Node* root)
    {
        if (root == NULL)
            return NULL;
        size_t leftSize = _Depth(root->_left);
        size_t rightSize = _Depth(root->_right);
        return leftSize > rightSize ? leftSize + 1 : rightSize + 1;
    }

    bool _JustTree(Node* root)
    {
        queue<Node*> q;
        Node* cur = root;
        if (root)
            q.push(root);
        while ((cur = q.front())&& cur != NULL)
        {
            q.push(cur->_left);
            q.push(cur->_right);
            q.pop();
        }
        while (!q.empty())
        {
            Node* front = q.front();
            if (front != NULL)
                return false;
        }
        return true;
    }
private:
    Node* _root;
};

void Test()
{
    int a[] = { 1, 2, 3,'#','#', 4,'#','#', 5, 6 };
    BinaryTree<int> bs(a, sizeof(a) / sizeof(a[0]), '#');
    bs.InOrder();
    bs.InOrderNoR();
    bs.PreOrder();
    bs.PreOrderNoR();
    bs.PostOrder();
    bs.PostOrderNoR();
    cout<<bs.Depth()<<endl; 
    cout<<bs.JustTree() << endl;
}

//递归  简洁  抽象   容易导致栈溢出
//非递归  用栈解决  重点  1,当一个节点从栈拿出来的时候,所有左节点已经访问过了,
//且都压到栈中,将右当成子问题 2,取栈里面的数据,节点右子树(子问题)

此测试用例的运行结果如下:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值