说明
给你一个字符串 s 和一个整数 k 。
定义函数 distance(s1, s2) ,用于衡量两个长度为 n 的字符串 s1 和 s2 之间的距离,即:
字符 'a' 到 'z' 按 循环 顺序排列,对于区间 [0, n - 1] 中的 i ,计算所有「 s1[i] 和 s2[i] 之间 最小距离」的 和 。
例如,distance("ab", "cd") == 4 ,且 distance("a", "z") == 1 。
你可以对字符串 s 执行 任意次 操作。在每次操作中,可以将 s 中的一个字母 改变 为 任意 其他小写英文字母。
返回一个字符串,表示在执行一些操作后你可以得到的 字典序最小 的字符串 t ,且满足 distance(s, t) <= k 。
示例 1:
输入:s = "zbbz", k = 3
输出:"aaaz"
解释:在这个例子中,可以执行以下操作:
将 s[0] 改为 'a' ,s 变为 "abbz" 。
将 s[1] 改为 'a' ,s 变为 "aabz" 。
将 s[2] 改为 'a' ,s 变为 "aaaz" 。
"zbbz" 和 "aaaz" 之间的距离等于 k = 3 。
可以证明 "aaaz" 是在任意次操作后能够得到的字典序最小的字符串。
因此,答案是 "aaaz" 。
示例 2:
输入:s = "xaxcd", k = 4
输出:"aawcd"
解释:在这个例子中,可以执行以下操作:
将 s[0] 改为 'a' ,s 变为 "aaxcd" 。
将 s[2] 改为 'w' ,s 变为 "aawcd" 。
"xaxcd" 和 "aawcd" 之间的距离等于 k = 4 。
可以证明 "aawcd" 是在任意次操作后能够得到的字典序最小的字符串。
因此,答案是 "aawcd" 。
示例 3:
输入:s = "lol", k = 0
输出:"lol"
解释:在这个例子中,k = 0,更改任何字符都会使得距离大于 0 。
因此,答案是 "lol" 。
提示:
1 <= s.length <= 100
0 <= k <= 2000
s 只包含小写英文字母。
题解思路
贪心
- 根据题意简单理解下
- 有k个可以操作的点数
- 需要找字典序最小的(字典序最小也就是——越前面的越靠近a最优先)
- 即得到一个贪心策略
- 遍历字符串的每个字符
- 如果当前字符与a的距离小于k,则说明当前的字符可以等于’a’,字典序最小,应当判断下一位
- 如果当前字符与a的距离大于k,则说明当前字符不能等于’a’,则当前字符减去k,操作点数用完,直接
- 优化一下就是,如果当前字符与a的距离大于k,操作点数用完,直接返回;否则将此位置为’a’,k减去当前距离
- 关于dis的取法:
- 一开始按题意写的,方法有保留
- 后来优化了一下,取该字符和’a’与’z’+1 (a的两种表示)之间更小的那个就可以了
Code
贪心
class Solution {
public String getSmallestString(String s, int k) {
char[] cs = s.toCharArray();
for(int i = 0; i < cs.length; i++){
int dis = Math.min(cs[i] - 'a', 'z' - cs[i] + 1);
if (dis > k){
cs[i] -= k;
return new String(cs);
}
cs[i] = 'a';
k -= dis;
}
return new String(cs);
}
private int dis(char c1, char c2){
int i1 = (c1 > c2 ? c1 : c2) - 'a';
int i2 = (c1 > c2 ? c2 : c1) - 'a';
int d = Math.abs(i1 - i2);
if(d > 12){
d = Math.abs(i2 + 26 - i1);
}
return d;
}
}