每日一题 494. 目标和

494. 目标和

难度:中等
语言:简单

题目内容

给你一个整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :

例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

在这里插入图片描述

解题思路

这一题其实是很明显的动态规划的题目,主要就是找到状态转移方程,如何让前后两个值产生联系。如果j代表的是最后的值,那方程应该是这样的。

  • f[i][j]=f[i−1][j−nums[i−1]]+f[i−1][j+nums[i−1]]

开始我就想得还蛮简单的,想要构建一个n*s(s为最大值)的列表,结果发现是我想太简答了,看了答案以后,发现其实应该考虑加和减两种情况。
在这里插入图片描述
借用一下三叶大神的代码,今天有点忙,过几天自己再看一下这一题。

class Solution {
    public int findTargetSumWays(int[] nums, int t) {
        int n = nums.length;
        int s = 0;
        for (int i : nums) s += Math.abs(i);
        if (t > s) return 0;
        int[][] f = new int[n + 1][2 * s + 1];
        f[0][0 + s] = 1;
        for (int i = 1; i <= n; i++) {
            int x = nums[i - 1];
            for (int j = -s; j <= s; j++) {
                if ((j - x) + s >= 0) f[i][j + s] += f[i - 1][(j - x) + s];
                if ((j + x) + s <= 2 * s) f[i][j + s] += f[i - 1][(j + x) + s];
            }
        }
        return f[n][t + s];
    }
}

作者:AC_OIer
链接:https://leetcode-cn.com/problems/target-sum/solution/gong-shui-san-xie-yi-ti-si-jie-dfs-ji-yi-et5b/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值