论文阅读-Transformer-based language models for software vulnerability detection

本文介绍了一个利用Transformer语言模型检测软件漏洞的系统,通过源代码翻译、BERT和GPT模型训练,实现对代码片段的分析。通过数据清洗、预处理和词嵌入,提升模型性能并与RNN模型进行对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 「分享了一批文献给你,请您通过浏览器打开
https://www.ivysci.com/web/share/biblios/D2xqz52xQJ4RKceFXAFaDU/
您还可以一键导入到 ivySCI 文献管理软件阅读,并在论文中引用 」

本文主旨:本文提出了一个系统的框架来利用基于Transformer的语言模型来检测软件漏洞。该框架包括以下几个步骤:

1. 源代码翻译:将C/C++高级编程语言的源代码转换为能输入transformer的格式。这样做是为了利用自然语言与高级编程语言之间的相似性。

2. 模型准备:使用大规模的基于Transformer的语言模型进行训练和微调。其中,本文主要考虑了BERT (Bidirectional Encoder Representations from Transformers) 模型和GPT (Generative Pre-trained Transformer) 模型。

3. 推断:将经过翻译的源代码注释片段输入到训练好的语言模型中,以进行软件漏洞的检测。语言模型将根据上下文理解注释和代码的关系,并判断是否存在潜在的漏洞。

通过这个框架,可以利用Transformer-based语言模型来自动检测软件漏洞,并且相比传统的基于RNN的模型,语言模型在漏洞检测方面具有更好的性能表现。

本文的创新点

简而言之就是,将软件的源代码转换成自然语言,通过transformer来推断源代码有没有漏洞。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值