neo4j+python知识图谱构建(基于豆瓣TOP250电影)

该博客介绍了如何利用Python爬取豆瓣Top250电影数据,创建知识图谱,包括4个节点(电影、导演、演员、类型)和4种关系。通过CSV文件存储节点和关系信息,然后导入Neo4j数据库。在执行导入前需确保没有冲突的数据库,并在Neo4j配置文件中激活新的数据库。最后,可以通过Cypher语句对构建的知识图谱进行查询和操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

爬取内容网站:https://movie.douban.com/top250?start=0&filter=

第一步:明确节点nodes和关系relations。

针对本文,有4个节点,4个关系。一个节点就相当于一个实体。

【注明:因为一部电影可以属于很多种类型,比如《肖申克的救赎》可以属于犯罪,也可以属于剧情,因此把type(类型)也作为一个节点。】

因此,一共需要生成八个文件,包括四个节点文件和四个关系文件。

文件类型规定ÿ

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值