行列式

行列式:

对于行列式的定义,我们引入逆序数

1.逆序数

我们称由1,2,3,……,n组成的有序数组称为一个n阶排列,(注意:n个数不能缺少,不能重复)例如:2134,23415 等;

逆序:一个大的数排在一个小的数前面,我们称为一个逆序

逆序数:一个排列如逆序综述称为逆序数,例如: τ \tau τ代表就是一个逆序数
τ ( 3 , 5 , 6 , 1 , 4 , 2 ) = 9 \tau(3,5,6,1,4,2)=9 τ356142=9

2.行列式:

行列式的值就是:取自不同行不同列的元素的乘积代数和
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 ⋯ j n ( − 1 ) τ ( j 1 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \left| \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{matrix} \right| =\sum_{j_1\cdots j_n}(-1)^{\tau(j_1\cdots j_n)}a_{1j_1}a_{2j_2}\cdots a_{nj_n} a11a21an1a12a22an2a1na2nann=j1jn(1)τ(j1jn)a1j1a2j2anjn
注:共有 n . ( n − 1 ) . ( n − 2 ) ⋯ 1 = n ! n.(n-1).(n-2)\cdots 1=n! n.(n1).(n2)1=n!

行列式的某一个值,替换为参数或者函数,行列式就为相应的参数或者表达式

3.行列式计算

对角线法则,这里不在介绍(百度一下就知道),例题:
在 函 数 f ( x ) = ∣ x 2 x 1 0 1 x 2 3 2 3 x 2 1 1 2 x ∣ 中 求 x 4 与 x 3 的 系 数 在函数f(x)=\left| \begin{matrix} x & 2x & 1 & 0 \\ 1 & x & 2 & 3\\ 2 & 3 & x & 2 \\ 1 & 1 & 2 & x \\ \end{matrix} \right|中求x^{4}与x^{3}的系数 f(x)=x1212xx3112x2032xx4x3
我们利用不同行,不同列乘积和是行列式的值:
x 4 = x × x × x × x x^{4}=x\times x\times x\times x x4=x×x×x×x 系数为1
x 3 = 2 x × 1 × x × x x^{3} = 2x\times 1\times x\times x x3=2x×1×x×x 系数为2
∣ 0 0 ⋯ 0 a 1 , n 0 0 ⋯ a 2 , n − 1 0 ⋯ ⋯ ⋯ ⋯ ⋯ a n , 1 0 ⋯ 0 0 ∣ = ∣ a 1 , 1 ⋯ a 1 , n − 1 a 1 , n a 21 ⋯ a 2 , n − 1 0 ⋯ ⋯ ⋯ ⋯ a n , 1 0 ⋯ 0 ∣ = ∣ 0 ⋯ 0 a 1 n 0 ⋯ a 2 , n − 1 a 2 , n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ \left| \begin{matrix} 0 & 0 & \cdots & 0 & a_{1,n} \\ 0 & 0 & \cdots & a_{2,n-1} &0 \\ \cdots & \cdots & \cdots & \cdots &\cdots\\ a_{n,1} & 0 & \cdots & 0 & 0 \\ \end{matrix}\right|= \left| \begin{matrix} a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\ a_{21} & \cdots & a_{2,n-1} & 0 \\ \cdots & \cdots & \cdots & \cdots\\ a_{n,1} & 0 & \cdots & 0 \\ \end{matrix} \right|= \left| \begin{matrix} 0 & \cdots & 0 & a_{1n} \\ 0 & \cdots & a_{2,n-1} & a_{2,n} \\ \cdots & \cdots & \cdots & \cdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{matrix} \right| 00an,10000a2,n10a1,n00=a1,1a21an,10a1,n1a2,n1a1,n00=00an1an20a2,n1a1na2,nann
三个行列式的结果都一样为:

( − 1 ) n ( n − 1 ) / 2 a 1 n a 2 n ⋯ a n n (-1)^{n(n-1)/2}a_{1n}a_{2n}\cdots a_{nn} (1)n(n1)/2a1na2nann,这里我们用到的逆序数 τ \tau τ

τ ( n ( n − 1 ) ( n − 2 ) ⋯ 1 ) = n ( n − 1 ) ( n − 2 ) ⋯ 1 = n ( n + 1 ) / 2 \tau(n(n-1)(n-2)\cdots 1)=n(n-1)(n-2)\cdots 1={n(n+1)}/2 τ(n(n1)(n2)1)=n(n1)(n2)1=n(n+1)/2

4.行列式的性质

7个常用的性质,总结如下:

性质1: D = D T D = D^{T} D=DT

∣ a b c d ∣ = ∣ a c b d ∣ = a b − c d \left| \begin{matrix} a&b\\c&d\end{matrix}\right|= \left| \begin{matrix} a&c\\b&d \end{matrix} \right|=ab-cd acbd=abcd=abcd
性质2:行列式两行(两列元素呼唤,行列式的值变号)
∣ 1 2 3 4 ∣ = − 2 , ∣ 3 4 1 2 ∣ = 2 \left| \begin{matrix} 1&2\\3&4 \end{matrix} \right|={-2},\left| \begin{matrix} 3&4\\1&2 \end{matrix}\right|=2 1324=23142=2
性质3: 行列式某行(列)元素全为零,行列式的值为零

性质4:行列式中某行(列)有公因子k,则可以将K提到行列式外面
∣ a 11 a 12 ⋯ a 1 n ⋯ ⋯ ⋯ ⋯ k a i 1 k a i 2 ⋯ k a i n ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ = k ∣ a 11 a 12 ⋯ a 1 n ⋯ ⋯ ⋯ ⋯ a i 1 a i 2 ⋯ a i n ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ \left| \begin{matrix} a_{11} & a_{12}&\cdots &a_{1n}\\ \cdots &\cdots&\cdots &\cdots\\ ka_{i1} & ka_{i2}&\cdots &ka_{in}\\\cdots &\cdots& &\cdots\\ a_{n1} & a_{n2}&\cdots &a_{nn} \end{matrix} \right|=k \left| \begin{matrix} a_{11} & a_{12}&\cdots &a_{1n}\\ \cdots &\cdots&\cdots &\cdots\\ a_{i1} & a_{i2}&\cdots &a_{in}\\\cdots &\cdots& &\cdots\\ a_{n1} & a_{n2}&\cdots &a_{nn} \end{matrix} \right| a11kai1an1a12kai2an2a1nkainann=ka11ai1an1a12ai2an2a1nainann
性质5:行列式某行(列)元素均是两个元素之和,则可以拆分为两个行列式之和
∣ a 11 a 12 ⋯ a 1 n ⋯ ⋯ ⋯ ⋯ a i 1 + b i 1 a i 2 + b i 2 ⋯ a i n + b i n ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋯ ⋯ ⋯ ⋯ a i 1 a i 2 ⋯ a i n ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋯ ⋯ ⋯ ⋯ b i 1 b i 2 ⋯ b i n ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ \left| \begin{matrix} a_{11} & a_{12}&\cdots &a_{1n}\\ \cdots &\cdots&\cdots &\cdots\\ a_{i1}+b_{i1} & a_{i2}+b_{i2}&\cdots &a_{in}+b_{in}\\\cdots &\cdots& &\cdots\\ a_{n1} & a_{n2}&\cdots &a_{nn} \end{matrix} \right|= \left| \begin{matrix} a_{11} & a_{12}&\cdots &a_{1n}\\ \cdots &\cdots&\cdots &\cdots\\ a_{i1} & a_{i2}&\cdots &a_{in}\\\cdots &\cdots& &\cdots\\ a_{n1} & a_{n2}&\cdots &a_{nn} \end{matrix} \right|+\left| \begin{matrix} a_{11} & a_{12}&\cdots &a_{1n}\\ \cdots &\cdots&\cdots &\cdots\\ b_{i1} & b_{i2}&\cdots &b_{in}\\\cdots &\cdots& &\cdots\\ a_{n1} & a_{n2}&\cdots &a_{nn} \end{matrix} \right| a11ai1+bi1an1a12ai2+bi2an2a1nain+binann=a11ai1an1a12ai2an2a1nainann+a11bi1an1a12bi2an2a1nbinann

∣ a 11 + b 11 a 12 + b 12 a 21 + b 21 a 22 + b 22 ∣ ≠ ∣ a 11 a 12 a 21 a 22 ∣ + ∣ b 11 b 12 b 21 b 22 ∣ \left| \begin{matrix} a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{22} \end{matrix} \right| \neq \left| \begin{matrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{matrix} \right|+\left| \begin{matrix} b_{11}&b_{12}\\b_{21}&b_{22} \end{matrix} \right| a11+b11a21+b21a12+b12a22+b22=a11a21a12a22+b11b21b12b22

性质6:行列式某k倍加到另外一行(列),行列式的值不变
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ∣ a 11 a 12 a 13 a 21 + k a 11 a 22 + k a 12 a 23 + k a 13 a 31 a 32 a 33 ∣ \left| \begin{matrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{matrix} \right| = \left| \begin{matrix} a_{11}&a_{12}&a_{13}\\a_{21}+ka_{11}&a_{22}+ka_{12}&a_{23}+ka_{13}\\a_{31}&a_{32}&a_{33} \end{matrix} \right| a11a21a31a12a22a32a13a23a33=a11a21+ka11a31a12a22+ka12a32a13a23+ka13a33
性质7:行列式两行(列)成比例,行列式为0

5.行列式展开

余子式:n阶行列式中, a i j a_{ij} aij元素所在的第 i i i行,第 j j j列划去得到的n-1阶行列式为 a i j a_{ij} aij的余子式,记作 M i j M_{ij} Mij

代数余子式 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij M i j M_{ij} Mij的代数余子式

行列式展开:行列式等于任意一行(列)的各元素之和与其对应的代数余子式之和。
D = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n , ( i = 1 , 2 , 3 , ⋯ , n ) D=a_{i1}A_{i1}+a_{i2}A_{i2}+ \cdots +a_{in}A_{in},(i=1,2,3,{\cdots},n ) D=ai1Ai1+ai2Ai2++ainAin,(i=1,2,3,,n)
重要推论: 行列式某一行(列)的元素与另外一行(列)对应代数余子式的乘积的和为零。
a i 1 A j 1 + a i 2 A j 2 + ⋯ + a i n A j n = 0 ( i ≠ j ) a_{i1}A_{j1}+a_{i2}A_{j2}+ \cdots +a_{in}A_{jn}=0(i\neq j ) ai1Aj1+ai2Aj2++ainAjn=0(i=j)
拉普拉斯定理:行列式可以按照任何k行k列展开
∣ 1 2 3 4 5 6 7 8 − 1 0 1 − 3 0 0 4 − 1 ∣ \left| \begin{matrix} 1&2&3&4\\5&6&7&8\\ -1&0&1&-3\\0&0&4&-1\\ \end{matrix} \right| 1510260037144831
我们可以展开为(按照第3行与第4行展开,对于列 C 4 2 = 6 C_{4}^{2}=6 C42=6个组合):
D = ∣ − 1 0 0 0 ∣ . ( − 1 ) 3 + 4 + 1 + 2 . ∣ 3 4 7 8 ∣ + ∣ − 1 1 0 4 ∣ . ( − 1 ) 3 + 4 + 1 + 3 . ∣ 2 4 6 8 ∣ + ∣ − 1 3 0 1 ∣ . ( − 1 ) 3 + 4 + 1 + 4 . ∣ 2 3 6 7 ∣ D = \left| \begin{matrix} -1&0\\0&0 \end{matrix} \right|.(-1)^{3+4+1+2}. \left| \begin{matrix} 3&4\\7&8 \end{matrix} \right|+ \left| \begin{matrix} -1&1\\0&4 \end{matrix} \right|.(-1)^{3+4+1+3}. \left| \begin{matrix} 2&4\\6&8 \end{matrix} \right|+ \left| \begin{matrix} -1&3\\0&1 \end{matrix} \right|.(-1)^{3+4+1+4}. \left| \begin{matrix} 2&3\\6&7 \end{matrix} \right| D=1000.(1)3+4+1+2.3748+1014.(1)3+4+1+3.2648+1031.(1)3+4+1+4.2637
+ ∣ 0 1 0 4 ∣ . ( − 1 ) 3 + 4 + 2 + 3 . ∣ 1 4 5 8 ∣ + ∣ 0 3 0 − 1 ∣ . ( − 1 ) 3 + 4 + 2 + 4 . ∣ 1 3 5 7 ∣ + ∣ 1 3 4 − 1 ∣ . ( − 1 ) 3 + 4 + 3 + 4 . ∣ 1 2 5 6 ∣ + \left| \begin{matrix} 0&1\\0&4 \end{matrix} \right|.(-1)^{3+4+2+3}. \left| \begin{matrix} 1&4\\5&8 \end{matrix} \right|+ \left| \begin{matrix} 0&3\\0&-1 \end{matrix} \right|.(-1)^{3+4+2+4}. \left| \begin{matrix} 1&3\\5&7 \end{matrix} \right|+ \left| \begin{matrix} 1&3\\4&-1 \end{matrix} \right|.(-1)^{3+4+3+4}. \left| \begin{matrix} 1&2\\5&6 \end{matrix} \right| +0014.(1)3+4+2+3.1548+0031.(1)3+4+2+4.1537+1431.(1)3+4+3+4.1526
*特殊的拉普拉斯行列式
∣ A ∗ O B ∣ = ∣ A O ∗ B ∣ = ∣ A ∣ ∣ B ∣ \left| \begin{matrix} A&*\\O&B \end{matrix} \right|= \left| \begin{matrix} A&O\\*&B \end{matrix} \right|= \left| \begin{matrix} A \end{matrix} \right| \left| \begin{matrix} B \end{matrix} \right| AOB=AOB=AB

∣ O A B ∗ ∣ = ∣ ∗ A B O ∣ = ( − 1 ) m . n ∣ A ∣ ∣ B ∣ \left| \begin{matrix} O&A\\B&* \end{matrix} \right|= \left| \begin{matrix} *&A\\B&O \end{matrix} \right| =(-1)^{m.n} \left| \begin{matrix} A \end{matrix} \right| \left| \begin{matrix} B \end{matrix} \right| OBA=BAO=(1)m.nAB

6.范德蒙行列式

∣ 1 1 1 ⋯ 1 x 1 x 2 x 3 ⋯ x n x 1 2 x 2 2 x 3 2 ⋯ x n 2 ⋯ ⋯ ⋯ ⋯ ⋯ x 1 n − 1 x 2 n − 1 x 3 n − 1 ⋯ x n n − 1 ∣ = ∏ 0 ≤ j < i ≤ n n x i − x j \left| \begin{matrix} 1&1&1&\cdots&1\\ x_{1}&x_{2}&x_{3}&\cdots&x_{n}\\ x_{1}^{2}&x_{2}^{2}&x_{3}^{2}&\cdots&x_{n}^{2}\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ x_{1}^{n-1}&x_{2}^{n-1}&x_{3}^{n-1}&\cdots&x_{n}^{n-1}\\ \end{matrix} \right|=\prod_{0\leq j<i\leq n}^n{x_i-x_j} 1x1x12x1n11x2x22x2n11x3x32x3n11xnxn2xnn1=0j<innxixj

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值