天池大数据竞赛——糖尿病遗传风险预测赛后总结(二)

本文是天池大数据竞赛的赛后总结,探讨了利用LightGBM、XGBoost和Keras进行糖尿病遗传风险预测。文中详细解释了这些算法的工作原理,并通过模型融合提升高血糖预测准确性。实验结果显示,Keras通常优于LightGBM和XGBoost,而融合模型表现最佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

天池大数据竞赛——天池精准医疗大赛人工智能辅助糖尿病遗传风险预测赛后总结

天池大数据竞赛官方网址(链接

六、预测算法

1. LightGBM

  LightGBM利用基于histogram的算法,通过将连续特征(属性)值分段为discrete bins来加快训练的速度并减少内存的使用。直方图算法的基本思想:先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。遍历数据时,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。基于histogram算法有很多优点,包括减少分割增益的计算量、通过直方图的相减来进行进一步的加速、减少内存的使用、减少并行学习的通信代价等。
  Gradient Boosting Decision Tree(GBDT)是一种被广泛使用的算法,目前也有很多实现方法,比如说scikit-learn,LightGBM。其实关于梯度提升树不同的实现,本质就是所使用的损失函数和最小化损失函数的方法有所差异。而梯度提升算法的核心思想就是通过拟合负梯度值去学习决策树。
  相关代码如下,仍需要根据实际应用做出相应的更改。
# coding:utf-8
#Author: chenhao
#date: Jan.22.2018
#Description: Tianchi Medical solution train dataset with Lightgbm, use the coxbox to soft the dataset

import time
import datetime
import numpy as np
import pandas as pd
import lightgbm as lgb
from dateutil.parser import parse
from sklearn.cross_validation import KFold
from sklearn.metrics import mean_squared_error
from scipy import stats

data_path = 'data/'

train = pd.read_csv(data_path + 'd_train_20180102.csv', encoding='gb2312')
test = pd.read_csv(data_path + 'd_test_A_20180102.csv', encoding='gb2312')

def make_feat(train, test):
    train_id = train.id.values.copy()
    test_id = test.id.values.copy()
    #对数据进行合并与重塑
    data = pd.concat([train, test])

    data['性别'] = data['性别'].map({
  '男': 1, '女': 0, '??':0})
    data['体检日期'] = (pd.to_datetime(data['体检日期']) - parse('2017-9-10')).dt.days

    #data.fillna(data.median(axis=0), inplace=True)

    train_feat = data[data.id.isin(train_id)]
    test_feat = data[data.id.isin(test_id)]

    #对数据缺失值进行处理
    train_feat = train_feat.drop(['id','乙肝表面抗原','乙肝表面抗体','乙肝e抗原','乙肝e抗体','乙肝核心抗体'],axis=1)
    test_feat = test_feat.drop(['id','乙肝表面抗原','乙肝表面抗体','乙肝e抗原','乙肝e抗体','乙肝核心抗体'], axis=1)


    #对缺少一部分的数据进行填充
    train_feat.fillna(train_feat.median(axis=0), inplace=True)
    test_feat.fillna(test_feat.median(axis=0), inplace=True)


    #删除离群值
    train_feat = train_feat.drop(train_feat[train_feat['*r-谷氨酰基转换酶'] > 600 ].index)
    train_feat = train_feat.drop(train_feat[train_feat['白细胞计数'] > 20.06].index)
    train_feat = train_feat.drop(train_feat[train_feat['*丙氨酸氨基转换酶'] == 498.89].index)
    train_feat = train_feat.drop(train_feat[train_feat['单核细胞%'] > 20 ].index)
    train_feat = train_feat.drop(train_feat[train_feat['*碱性磷酸酶'] > 340].index)    #有待调整
    train_feat = train_feat.drop
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值