题目描述
任何一个自然数的约数中都有1和它本身,我们把小于它本身的因数叫做这个自然数的真约数。 如6的所有真约数是1、2、3,而且6=1+2+3。像这样,一个数所有真约数的和正好等于这个数,通常把这个数叫做完美数。 古希腊人非常重视完美数。毕达哥拉斯发现它之后,人们就开始了对完美数的研究。 现在要求输出所有在m和n范围内的完美数。
输入
输入数据有多组,每组占一行,包括两个整数m和n(1≤m, n≤99999999)。 输入以0 0结束
输出
对于每个测试实例,要求输出所有在给定范围内的完美数,就是说,输出的完美数必须大于等于m,并且小于等于n,如果有多个,则要求从小到大排列在一行内输出,之间用一个空格隔开; 如果给定的范围内不存在完美数,则输出No; 每个测试实例的输出占一行。
样例输入
1 100
0 0
样例输出
6 28
#include <stdio.h>
int main()
{
int a[6] = { 6,28,496,8128,33550336 };
int n[100],m[100];
int t1 = 0, t2 = 0;
int i, j, k;
int num[6];
int flat = 0;
for (i = 0;; i++)
{
scanf("%d %d", &n[i], &m[i]);
if (n[i] == 0 && m[i] == 0) //输入0 0是退出循环
{
t1 = i;
break;
}
}
for (i = 0; i < t1; i++)
{
flat = 0;
for (j = 0; j < 6; j++) //判断完美数是否在输入的区间中
{
if (n[i] <= a[j] && a[j] <= m[i])
{
num[t2++] = a[j]; //在输入的区间中则放入数组中
flat = 1; //表示该区间存在完美数
}
}
if (flat == 1) //存在完美数,则按要求输出
{
for (k = 0; k < t2 - 1; k++)
printf("%d ", num[k]);
printf("%d\n", num[t2 - 1]);
}
else if(flat==0) //不存在完美数,输出no
printf("No\n");
t2 = 0;
}
return 0;
}