- 博客(8)
- 收藏
- 关注

原创 智谱GLM4大模型构建Agent智能体全流程
本章将会使用GLM4模型+高德地图的天气API构建一个天气查询智能体,这是一个sample样例,天气查询智能体可以更换为各种业务范围的其他智能体。
2025-06-30 15:45:21
743

原创 基于GLM-4-Flash大模型+本地知识库部署高性能RAG
消费级的计算机设备和显卡限制了大模型的生成理解能力,在不更换设备的情况下使用一款好的云模型不失为一个很好的选择。智谱的GLM-4-Flash作为智谱AI 首个免费的大模型 API,它在实时网页检索、长上下文处理、多语言支持等方面表现出色,适用于智能问答、摘要生成和文本数据处理等多种应用场景。我们今天来使用它构建一个对设备性能几乎无要求的RAG项目。这种架构结合了本地知识库的高效检索和大语言模型的自然语言理解能力,具有以下优势:✅ 回答精准,基于实际数据✅ 减少大模型幻觉。
2025-06-30 12:21:02
1819
原创 Windows两条命令部署Milvus向量数据库
本文介绍了如何用两条命令快速部署Milvus向量数据库。首先需要确保系统已安装Docker,然后通过wget命令下载Milvus的docker-compose配置文件,最后使用docker compose命令启动服务。文中特别强调在PowerShell中以管理员身份运行命令,并建议选择非系统盘作为运行目录。整个部署过程仅需两个简单命令即可完成Milvus的安装和启动。
2025-07-22 15:31:28
223
原创 多级检索策略解析:HyDE、句子窗口检索、父文档检索在RAG系统中的应用
为什么需要多级检索?用户查询语义模糊:如 “帮我找AI相关的内容”关键信息分散在不同段落文档结构复杂冗长80%的模糊查询无法直接匹配文档43%的答案因缺乏上下文而被误解处理>10页的文档时,召回率下降超60%多级检索策略通过组合多种技术,显著提升RAG系统的性能。优先部署HyDE处理终端用户查询(成本上升约15%,效果提升80%+)技术文档系统必加句子窗口功能处理100页+文档必须启用父文档检索综合系统建议三种策略组合使用。
2025-07-04 15:19:19
904
原创 LlamaIndex + 智谱大模型GLM 实现智能代理(Agent)
摘要:基于LlamaIndex与GLM的企业知识助手系统 本文介绍了一个企业级知识助手系统的实现方案,该系统整合了LlamaIndex框架和智谱AI的GLM-4-Flash大模型。系统核心功能包括: 模型加载:采用轻量级GLM-4-Flash模型,通过LlamaIndex标准化接口实现多模型兼容 向量数据库:使用FAISS本地向量库存储文档知识,支持高效相似度检索 功能组件: FAISS查询引擎实现本地知识检索 数学计算工具支持表达式求解 Web搜索工具集成DuckDuckGo API 手机归属地查询等实用
2025-07-02 11:47:09
2464
原创 大模型流程优化之本地构建向量知识库速度过慢问题
本文探讨了构建向量知识库速度过慢的问题。原始代码使用all-mpnet-base-v2模型在CPU上处理438个文本块耗时近8分钟,主要瓶颈在于模型加载、向量生成和FAISS索引构建效率低下。通过改用轻量级模型all-MiniLM-L6-v2,时间缩短至1分24秒,提升500%;此外建议使用GPU加速(如AutoDL云平台)进一步优化。这些优化措施显著提高了向量知识库的构建效率,特别适合大规模数据处理场景。
2025-07-01 13:42:43
886
原创 Langchain+FAISS+sentence_transformer使用本地模型创建向量知识库的方法
本文将详细介绍如何利用 FAISS 作为向量数据库和 sentence-transformers 作为嵌入模型,在本地环境中构建高效、可扩展的向量知识库。无需依赖云端服务,完全在本地环境中实现文档处理和相似性检索。由 Facebook 开发的高效相似性搜索库支持大规模向量快速检索优化内存使用和查询速度支持 CPU 和 GPU 加速本文详细介绍了如何使用 FAISS 和 sentence-transformers 在本地环境中构建高效的向量知识库。
2025-06-27 12:17:21
969
原创 AI大模型部署之SentenceTransformers+Ollama
本文介绍了如何利用Ollama和SentenceTransformers构建简单的本地RAG(检索增强生成)系统。首先通过Ollama部署轻量级GLM4-9B模型作为语言模型,然后使用SentenceTransformers的all-MiniLM-L6-v2模型实现文本向量化。文章详细说明了利用nltk进行智能文本分块的技术方案,包括按句子拆分、块大小控制和重叠上下文处理等方法。最后展示了如何结合向量化后的知识库与LLM模型,实现对外部知识的检索和增强回答功能。该系统可在消费级设备上运行。
2025-06-26 18:05:13
1895
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人