【题目描述】
一个数的序列bibi,当b1<b2<...<bSb1<b2<...<bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,...,aN)(a1,a2,...,aN),我们可以得到一些上升的子序列(ai1,ai2,...,aiK)(ai1,ai2,...,aiK),这里1≤i1<i2<...<iK≤N1≤i1<i2<...<iK≤N。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中最长的长度是4,比如子序列(1,3,5,8)。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
【输入】
输入的第一行是序列的长度N(1≤N≤1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
【输出】
最长上升子序列的长度。
【输入样例】
7
1 7 3 5 9 4 8
【输出样例】
4
信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)http://ybt.ssoier.cn:8088/problem_show.php?pid=1281
#include<bits/stdc++.h>
using namespace std;
int a[1005],n,ans=INT_MIN,dp[1005];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
dp[i]=1;
}
for(int i=2;i<=n;++i){ //阶段
for(int j=1;j<i;++j){
if(a[i]>a[j]){
dp[i]=max(dp[i],dp[j]+1); //状态转移方程
}
}
ans=max(dp[i],ans); //更新最大值
}
printf("%d",ans);
return 0;
}