随着AI在前端领域的应用越来越广泛,如何设计一个可扩展、高性能、稳定可靠的AI开发框架变得尤为重要。今天就来分享一下我在实际项目中总结的架构设计经验。
架构设计原则
在设计AI开发框架时,我们需要考虑以下几个关键原则:
-
可扩展性
- 支持多种AI模型
- 便于添加新功能
- 易于维护和升级
-
高性能
- 响应速度快
- 资源占用低
- 并发处理能力强
-
可靠性
- 错误处理完善
- 服务降级机制
- 监控告警及时
框架核心设计
1. 模型管理层
// src/models/base.ts
export interface AIModel {
predict(input: any): Promise<any>
tokenize(text: string): Promise<number[]>
getMaxTokens(): number
}
// src/models/openai.ts
import { OpenAIApi, Configuration } from 'openai'
import { AIModel } from './base'
export class OpenAIModel implements AIModel {
private api: OpenAIApi
private model: string
private maxTokens: number
constructor(
apiKey: string,
model = 'gpt-3.5-turbo',
maxTokens = 4096
) {
const configuration = new Configuration({ apiKey })
this.api = new OpenAIApi(configuration)
this.model = model
this.maxTokens = maxTokens
}
async predict(input: any): Promise<any> {
const completion = await this.api.createChatCompletion({
model: this.model,
messages: input.messages,
temperature: input.temperature || 0.7,
max_tokens: input.maxTokens || this.maxTokens
})
return completion.data.choices[0].message?.content
}
async tokenize(text: string): Promise<number[]> {
// 实现tokenization逻辑
return []
}
getMaxTokens(): number {
return this.maxTokens
}
}
// src/models/factory.ts
import { AIModel } from './base'
import { OpenAIModel } from './openai'
export class ModelFactory {
private static instances: Map<string, AIModel> = new Map()
static getModel(
type: string,
config: any
): AIModel {
const key = `${type}-${config.model}`
if (!this.instances.has(key)) {
switch (type) {
case 'openai':
this.instances.set(
key,
new OpenAIModel(
config.apiKey,
config.model,
config.maxTokens
)
)
break
default:
throw new Error(`未支持的模型类型: ${type}`)
}
}
return this.instances.get(key)!
}
}
2. 缓存管理层
// src/cache/base.ts
export interface CacheProvider {
get(key: string): Promise<any>
set(key: string, value: any, ttl?: number): Promise<void>
delete(key: string): Promise<void>
}
// src/cache/redis.ts
import { Redis } from 'ioredis'
import { CacheProvider } from './base'
export class RedisCache implements CacheProvider {
private client: Redis
constructor(config: any) {
this.client = new Redis(config)
}
async get(key: string): Promise<any> {
const value = await this.client.get(key)
return value ? JSON.parse(value) : null
}
async set(
key: string,
value: any,
ttl = 3600
): Promise<void> {
await this.client.set(
key,
JSON.stringify(value),
'EX',
ttl
)
}
async delete(key: string): Promise<void> {
await this.client.del(key)
}
}
// src/cache/memory.ts
import LRU from 'lru-cache'
import { CacheProvider } from './base'
export class MemoryCache implements CacheProvider {
private cache: LRU<string, any>
constructor(options: any) {
this.cache = new LRU(options)
}
async get(key: string): Promise<any> {
return this.cache.get(key)
}
async set(
key: string,
value: any,
ttl = 3600
): Promise<void> {
this.cache.set(key, value, { ttl: ttl * 1000 })
}
async delete(key: string): Promise<void> {
this.cache.delete(key)
}
}
3. 请求处理层
// src/handlers/base.ts
export interface RequestHandler {
handle(request: any): Promise<any>
}
// src/handlers/completion.ts
import { AIModel } from '../models/base'
import { CacheProvider } from '../cache/base'
import { RateLimiter } from '../utils/rateLimiter'
export class CompletionHandler implements RequestHandler {
private model: AIModel
private cache: CacheProvider
private rateLimiter: RateLimiter
constructor(
model: AIModel,
cache: CacheProvider,
rateLimiter: RateLimiter
) {
this.model = model
this.cache = cache
this.rateLimiter = rateLimiter
}
async handle(request: any): Promise<any> {
try {
// 1. 速率限制检查
await this.rateLimiter.checkLimit(request.userId)
// 2. 缓存检查
const cacheKey = this.generateCacheKey(request)
const cached = await this.cache.get(cacheKey)
if (cached) {
return cached
}
// 3. 调用模型
const result = await this.model.predict(request)
// 4. 缓存结果
await this.cache.set(cacheKey, result)
return result
} catch (error) {
// 错误处理和日志记录
throw error
}
}
private generateCacheKey(request: any): string {
// 生成缓存key的逻辑
return `completion:${JSON.stringify(request)}`
}
}
4. 中间件层
// src/middleware/base.ts
export interface Middleware {
process(
request: any,
next: () => Promise<any>
): Promise<any>
}
// src/middleware/auth.ts
export class AuthMiddleware implements Middleware {
async process(
request: any,
next: () => Promise<any>
): Promise<any> {
if (!request.apiKey) {
throw new Error('缺少API密钥')
}
// 验证API密钥
await this.validateApiKey(request.apiKey)
return next()
}
private async validateApiKey(apiKey: string): Promise<void> {
// 实现API密钥验证逻辑
}
}
// src/middleware/rateLimit.ts
export class RateLimitMiddleware implements Middleware {
private rateLimiter: RateLimiter
constructor(rateLimiter: RateLimiter) {
this.rateLimiter = rateLimiter
}
async process(
request: any,
next: () => Promise<any>
): Promise<any> {
await this.rateLimiter.checkLimit(request.userId)
return next()
}
}
// src/middleware/error.ts
export class ErrorMiddleware implements Middleware {
async process(
request: any,
next: () => Promise<any>
): Promise<any> {
try {
return await next()
} catch (error: any) {
// 错误处理和日志记录
throw this.formatError(error)
}
}
private formatError(error: any): Error {
// 统一错误格式
return new Error(error.message)
}
}
5. 监控告警层
// src/monitoring/metrics.ts
import { Counter, Histogram } from 'prom-client'
export class Metrics {
private requestCounter: Counter
private latencyHistogram: Histogram
private errorCounter: Counter
constructor() {
this.requestCounter = new Counter({
name: 'ai_requests_total',
help: 'AI请求总数'
})
this.latencyHistogram = new Histogram({
name: 'ai_request_duration_seconds',
help: '请求延迟分布'
})
this.errorCounter = new Counter({
name: 'ai_errors_total',
help: '错误总数'
})
}
recordRequest(): void {
this.requestCounter.inc()
}
recordLatency(duration: number): void {
this.latencyHistogram.observe(duration)
}
recordError(): void {
this.errorCounter.inc()
}
}
// src/monitoring/alerts.ts
export class AlertManager {
private metrics: Metrics
private threshold: number
private notifier: any
constructor(
metrics: Metrics,
threshold: number,
notifier: any
) {
this.metrics = metrics
this.threshold = threshold
this.notifier = notifier
}
async checkAlerts(): Promise<void> {
// 检查指标是否超过阈值
const errorRate = await this.calculateErrorRate()
if (errorRate > this.threshold) {
await this.notifier.send({
level: 'error',
message: `错误率超过阈值: ${errorRate}%`
})
}
}
private async calculateErrorRate(): Promise<number> {
// 计算错误率
return 0
}
}
框架使用示例
// src/index.ts
import { ModelFactory } from './models/factory'
import { RedisCache } from './cache/redis'
import { CompletionHandler } from './handlers/completion'
import { RateLimiter } from './utils/rateLimiter'
import { Metrics } from './monitoring/metrics'
// 1. 初始化组件
const model = ModelFactory.getModel('openai', {
apiKey: process.env.OPENAI_API_KEY,
model: 'gpt-3.5-turbo'
})
const cache = new RedisCache({
host: process.env.REDIS_HOST,
port: process.env.REDIS_PORT
})
const rateLimiter = new RateLimiter(cache, {
maxRequests: 100,
window: 60
})
const metrics = new Metrics()
// 2. 创建处理器
const handler = new CompletionHandler(
model,
cache,
rateLimiter
)
// 3. 处理请求
async function handleRequest(request: any) {
const startTime = Date.now()
try {
metrics.recordRequest()
const result = await handler.handle(request)
metrics.recordLatency(Date.now() - startTime)
return result
} catch (error) {
metrics.recordError()
throw error
}
}
// 使用示例
const request = {
userId: 'user123',
messages: [
{
role: 'user',
content: '你好,请帮我优化这段代码。'
}
]
}
handleRequest(request)
.then(console.log)
.catch(console.error)
实战经验总结
-
性能优化
- 多级缓存策略
- 异步并发处理
- 资源池化管理
-
可靠性保障
- 完善的错误处理
- 服务降级机制
- 实时监控告警
-
开发效率
- 统一的接口规范
- 插件化架构设计
- 完善的开发文档
写在最后
设计一个好的AI开发框架不是一蹴而就的,需要在实践中不断优化和改进。希望这篇文章能给大家一些启发,帮助你设计出更好的AI应用架构。
如果你有什么好的想法或建议,欢迎在评论区交流讨论!
如果觉得有帮助,别忘了点赞关注,我会继续分享更多实战经验~