数据库作业十五-关系数据理论+课后作业

问题的题出

在这里插入图片描述
在这里插入图片描述

规范化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

课后题

在这里插入图片描述
关系模式
学生:Student (StudentID,Name,Birthday,SDept,ClassNumber,Dormitory)
班级:Class (ClassNumber,ProfessionalName,CDept,CNumber,SchoolYear)
系:Dept (DeptName,DeptNumber,OfficeLocation,DNumber)
学会:Academy (AName,AYear,APlace,ANumber)
学生-学会:StudentAcademy:(StudentID,AName,Date)

函数依赖、码:
学生:Student (StudentID,Name,Birthday,SDept,ClassNumber,Dormitory)
StudentID: S t u d e n t I D → N a m StudentID \rightarrow Nam StudentIDNam, S t u d e n t I D → B i r t h d a y StudentID \rightarrow Birthday StudentIDBirthday, S t u d e n t I D → S D e p t StudentID \rightarrow SDept StudentIDSDept, S t u d e n t → C l a s s N a m e Student \rightarrow ClassName StudentClassName

SDept: S D e p t → D o r m i t o r y SDept \rightarrow Dormitory SDeptDormitory
因为 S D e p t ↛ S t u d e n t I D SDept \nrightarrow StudentID SDeptStudentID,同时 S D e p t ⊈ S t u d e n t I D SDept \nsubseteq StudentID SDeptStudentID, D o r m i t o r y ⊈ S D e p t Dormitory \nsubseteq SDept DormitorySDept,所以 S t u d e n t → 依 赖 D o r m i t o r y Student \overset{依赖} \rightarrow Dormitory StudentDormitory
候选码:StudentID
外码:SDept,ClassNumber
无全码


班级:Class (ClassNumber,ProfessionalName,CDept,CNumber,SchoolYear)
ClassNumber: C l a s s N u m b e r → P r o f e s s i o n a l N a m e ClassNumber \rightarrow ProfessionalName ClassNumberProfessionalName, C l a s s N u m b e r → C D e p t ClassNumber \rightarrow CDept ClassNumberCDept, C l a s s N u m b e r → C N u m b e r ClassNumber \rightarrow CNumber ClassNumberCNumber, C l a s s N u m b e r → S c h o o l Y e a r ClassNumber \rightarrow SchoolYear ClassNumberSchoolYear
无传递函数依赖

( P r o f e s s i o n a l N a m e , S c h o o l Y e a r ) → F C l a s s N u m b e r (ProfessionalName,SchoolYear) \overset{F}\rightarrow ClassNumber (ProfessionalName,SchoolYear)FClassNumber == 完全函数依赖==
候选码:ClassNumber
外码:CDept
无全码


系:Dept (DeptName,DeptNumber,OfficeLocation,DNumber)
DeptName: D e p t N a m e → D e p t N u m b e r DeptName \rightarrow DeptNumber DeptNameDeptNumber, D e p t N a m e → O f f i c e L o c a t i o n DeptName \rightarrow OfficeLocation DeptNameOfficeLocation, D e p t N a m e → D N u m b e r DeptName \rightarrow DNumber DeptNameDNumber
DeptNumber: D e p t N u m b e r → D e p t N a m e DeptNumber \rightarrow DeptName DeptNumberDeptName, D e p t N u m b e r → O f f i c e L o c a t i o n DeptNumber \rightarrow OfficeLocation DeptNumberOfficeLocation, D e p t N u m b e r → D N u m b e r DeptNumber \rightarrow DNumber DeptNumberDNumber
无传递函数依赖
候选码:DeptName,DeptNumber
无全码
无外码


学会:Academy (AName,AYear,APlace,ANumber)
AName: A N a m e → A Y e a r AName \rightarrow AYear ANameAYear, A N a m e → A P l a c e AName \rightarrow APlace ANameAPlace, A N a m e → A N u m b e r AName \rightarrow ANumber ANameANumber
无传递函数依赖
候选码:AName
无外码
无全码
在这里插入图片描述

(1):在这里插入图片描述
所以BC也是R的候选码时或 A → B C A \rightarrow BC ABC, B C ↛ A BC \nrightarrow A BCA
(2):ACE,BCE,CDE
以ACE为例:
A C E → A ACE \rightarrow A ACEA, A C E → B ACE \rightarrow B ACEB,
A C E → C ACE \rightarrow C ACEC, A C E → D ACE \rightarrow D ACED,
A C E → E ACE \rightarrow E ACEE,简单写下,看到这个就明白ACE为什么可以做为码了,另外两个同理
(3):
在这里插入图片描述
在这里插入图片描述
函数依赖中,没有部分和传递函数依赖,所以R属于第三范式,并不是每一个决定属性集都包含候选码,所以不属于BC范式
在这里插入图片描述
(1):正确,二目关系是指只有两个属性的表,一定不存在传递函数依赖。
(2):正确,只有两个属性,决定因素中必含有码
(3):正确,只有两个属性不存在非平凡的多值依赖,属于4NF。
(4):错误,去掉当且仅当。
(5):正确。总感觉这题出的不是很严谨,姑且考虑的简单点。
(6):正确。
(7):正确。
(8):错误,完全函数依赖。
在这里插入图片描述
(1):假如R为BC范式,则所有决定因素都含有候选码,即如果, X → Y X \rightarrow Y XY, Y → Z Y \rightarrow Z YZ,X,Y中都含有候选码,则 Y → X Y \rightarrow X YX,那么 X → Z X \rightarrow Z XZ不是传递函数依赖,属于3NF。
(2):假设R是3NF,R不是2NF。如果为3NF,则不存在传递函数依赖;不为2NF,存在部分函数依赖。即 X → Y X \rightarrow Y XY,X的真子集Z, Z → Y Z \rightarrow Y ZY,又Z是X的真子集,所以 X → Z X \rightarrow Z XZ,所以 X → 传 递 Y X \overset{传递}\rightarrow Y XY,不符合原假设,假设不成立。所以R是3NF,则R一定是2NF。

附加题

一.
Y(X1,X2,X3,X4)
(X1,X2)→X3
X2→X4
侯选码?
(X1,X2)
属于第几范式?
第一范式
二.
R(A,B,C,D)
F={AB→D,AC→BD,B→C}
侯选码?
AB、AC
最高属于第几范式?
第三范式。决定因素B不包含候选码,无传递函数依赖,都是完全函数依赖。
三.
R(X,Y,Z,W)
F={Y←→W,XY→Z}
侯选码?
XY,XW
最高属于第几范式?
第三范式.决定因素W,Y中不包含候选码,无传递函数依赖,非主属性Z完全函数依赖于候选码,所以为第三范式.
四.
R(A,B,C,D,E) F={A→B,CE→A,E→D}
求候选码。
CE
最高属于第几范式,为什么?
1NF,非主属性A,B,D不完全函数依赖于候选码.
分解到3NF。
R(A,B),R(A,C,E),R(E,D)
五.
R(商店编号,商品编号,数量,部门编号,负责人)
每个商店的每种商品只在一个部门销售,
每个商店的每个部门只有一个负责人,
每个商店的每种商品只有一个库存数量。
R(A,B,C,D,E), A B → D AB \rightarrow D ABD, A B → C AB\rightarrow C ABC, A D → E AD \rightarrow E ADE
求候选码。
AB
R已达第几范式?为什么?
第二范式, A B → D AB \rightarrow D ABD, A D → E AD \rightarrow E ADE, A B → 传 递 E AB \overset{传递}\rightarrow E ABE,存在传递函数依赖,所以不是第三范式.又非主属性C,D,E,完全依赖于候选码.所以是第二范式.
若不属于3NF,分解成3NF。
R(A,B,C,D)
R(A,D,E)
六.
R(A,B,C,D,E,F) F={A→C,AB→D,C→E,D→BF}
写出关键字。
候选码:AD,AB.非主属性C,E,F
分解到2NF。
R(A,C,E)
R(A,B,D,F)
分解到3NF。
R(A,C)
R(C,E)
R(A,B,D)
R(D,F)
分解到4NF。
R(A,B,D)
R(D,F)
R(C,E)
R(A,C)


昨天下午看完微软在线技术峰会后(再一次被微软的技术所震撼),开始准备写,总结先是总结到OneNote中,从OneNote中导出到CSDN上时,自动转换为了图片.昨天整理完,今天开始做题,做题的时间比整理的时间还长.尤其设计到一些证明时,现在做题基本靠猜,候选码,范式,先是猜着是什么,再通过一些反推,举不出反例来了,就认为是对的.现在理论还不是很熟悉,还无法从头一步一步严谨地推导出来.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值