国考数量关系一道关于发车间隔的经典题目

文章讲述了如何通过计算分析,确定李先生在路途中追上3辆长途汽车后,以最长时间迎面遇到最多辆从B市开往A市的长途汽车问题,涉及车速、发车间隔及相遇时间的优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

国考数量关系

考点6:发车间隔

(2014山东)往返A市和B市的长途汽车以同样的发车间隔从两个城市分别发车,以每小时 40公里的速度前往目标城市。上午九点多,李先生以每小时 50公里的速度开车从A市长途汽车站前往B市长途汽车站 。路途中总共追上了3辆从A市开往B市的长途汽车,问他在路途中最多能迎面遇到多少辆从B市的长途汽车。问她在路途中最多能迎面遇到多少辆从B市开往A市的长途汽车?

思考方式:

首先头脑中要构造出这样画面。A市汽车站每隔相同的时间发出一辆车,B市汽车站也以相同的时间间隔发车。

审题:小李在路途中总共追上了3辆从A市开往B市的长途汽车。也就是说 ,这一路上小李就追上了3辆车。问他在路途中最多能迎面遇到多少辆从B市开往A市的长途汽车?

我们进行这样一个思考:要想小李在路上遇到尽可能多的迎面而来的汽车,那么就需要让小李在路上的时间尽可能长。设小李的车速为 v l v_l vl, 公共客车的车速为 v b v_b vb, 发车间隔为 t 0 t_0 t0, 从小李在追上第一辆车到追上下一辆车之间的时间为 t t t. 则有:

两量公共汽车之间的间隔为: t ( v l − v b ) = t 0 v b t(v_l- v_b) = t_0 v_b t(vlvb)=t0vb

于是: t = t 0 v b v l − v b = t 0 v b 10 t = \frac{t_0 v_b}{v_l - v_b}= \frac{t_0 v_b}{10} t=vlvbt0vb=10t0vb

什么情况下,小李在路上的时间会尽可能长呢?

小李的车与某一辆车刚好同时从A汽车站出发,并且恰好和某另一辆车同时达到B车站,此外,路途中刚好追上了三辆车。此时,小李在路上的时间最长,为 4 t 4t 4t.

再来考虑与对面车迎面相遇的情况:

设从小李在追上第一辆车到追上下一辆车之间的时间为 t 1 t_1 t1. 则有:
t 1 ( v l + v b ) = t 0 v b t_1(v_l + v_b) = t_0 v_b t1(vl+vb)=t0vb
于是, t 1 = t 0 v b v l + v b = t 0 v b 90 = t 9 t_1 = \frac{t_0 v_b}{v_l + v_b} = \frac{t_0 v_b}{90} = \frac{t}{9} t1=vl+vbt0vb=90t0vb=9t

我们要最大化利用4t的时间,使得尽可能多的车被迎面相遇。

假设迎面相遇的第一辆车相遇时距离A车站的距离小于一个间隔,则遇到第一辆车的时间小于t/9, 还可以再遇到35辆车。总共遇到36辆车。这样的情况会迎面遇到最多的车辆。

若网友有不同意见,欢迎在评论区交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chenglin_Yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值