国考数量关系
考点6:发车间隔
(2014山东)往返A市和B市的长途汽车以同样的发车间隔从两个城市分别发车,以每小时 40公里的速度前往目标城市。上午九点多,李先生以每小时 50公里的速度开车从A市长途汽车站前往B市长途汽车站 。路途中总共追上了3辆从A市开往B市的长途汽车,问他在路途中最多能迎面遇到多少辆从B市的长途汽车。问她在路途中最多能迎面遇到多少辆从B市开往A市的长途汽车?
思考方式:
首先头脑中要构造出这样画面。A市汽车站每隔相同的时间发出一辆车,B市汽车站也以相同的时间间隔发车。
审题:小李在路途中总共追上了3辆从A市开往B市的长途汽车。也就是说 ,这一路上小李就追上了3辆车。问他在路途中最多能迎面遇到多少辆从B市开往A市的长途汽车?
我们进行这样一个思考:要想小李在路上遇到尽可能多的迎面而来的汽车,那么就需要让小李在路上的时间尽可能长。设小李的车速为 v l v_l vl, 公共客车的车速为 v b v_b vb, 发车间隔为 t 0 t_0 t0, 从小李在追上第一辆车到追上下一辆车之间的时间为 t t t. 则有:
两量公共汽车之间的间隔为: t ( v l − v b ) = t 0 v b t(v_l- v_b) = t_0 v_b t(vl−vb)=t0vb
于是: t = t 0 v b v l − v b = t 0 v b 10 t = \frac{t_0 v_b}{v_l - v_b}= \frac{t_0 v_b}{10} t=vl−vbt0vb=10t0vb
什么情况下,小李在路上的时间会尽可能长呢?
小李的车与某一辆车刚好同时从A汽车站出发,并且恰好和某另一辆车同时达到B车站,此外,路途中刚好追上了三辆车。此时,小李在路上的时间最长,为 4 t 4t 4t.
再来考虑与对面车迎面相遇的情况:
设从小李在追上第一辆车到追上下一辆车之间的时间为
t
1
t_1
t1. 则有:
t
1
(
v
l
+
v
b
)
=
t
0
v
b
t_1(v_l + v_b) = t_0 v_b
t1(vl+vb)=t0vb
于是,
t
1
=
t
0
v
b
v
l
+
v
b
=
t
0
v
b
90
=
t
9
t_1 = \frac{t_0 v_b}{v_l + v_b} = \frac{t_0 v_b}{90} = \frac{t}{9}
t1=vl+vbt0vb=90t0vb=9t
我们要最大化利用4t的时间,使得尽可能多的车被迎面相遇。
假设迎面相遇的第一辆车相遇时距离A车站的距离小于一个间隔,则遇到第一辆车的时间小于t/9, 还可以再遇到35辆车。总共遇到36辆车。这样的情况会迎面遇到最多的车辆。
若网友有不同意见,欢迎在评论区交流。