模指数运算问题

本文深入解析模指数运算的概念及在RSA算法中的应用,通过实例演示如何利用二进制法高效计算大指数的模,为理解加密算法提供坚实基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

模指数运算问题

什么叫模指数运算?

3 11 m o d 22 3^{11}mod 22 311mod22

这就是模指数运算问题。

在RSA算法中,无论加密还是解密都需要用到模指数运算问题。

常用的模指数算法有二进制法、二进制NAF算法、滑动窗口算法等。

我们主要使用的是二进制法。具体的公式性质的东西,我就不列了。直接上干货

我们就以上面这个简单的例子为例进行讲解:

11 可以化成二进制的形式即1011,即8+2+1
3 ≡ 3 ( m o d 22 ) 3 2 ≡ 9 ( m o d 22 ) 3 4 = 9 2 = 81 ≡ 15 ( m o d 22 ) 3 8 ≡ 1 5 2 ( m o d 22 ) = 5 s . t . 3 11 = 3 1 × 3 2 × 3 8 ≡ 3 × 9 × 5 = 135 ≡ 3 ( m o d 22 ) 3 \equiv 3 (mod 22)\\ 3^2 \equiv 9 (mod 22)\\ 3^4 = 9^2 = 81 \equiv 15(mod 22)\\ 3^8 \equiv 15^2 (mod 22) =5\\ s.t. 3^{11} = 3^1\times 3^2\times 3^8 \equiv 3\times 9 \times 5=135\equiv 3(mod 22) 33(mod22)329(mod22)34=92=8115(mod22)38152(mod22)=5s.t.311=31×32×383×9×5=1353(mod22)
这样我们就成功地计算出了一个大的指数的模!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chenglin_Yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值