模型评估

ROC曲线是评估分类模型性能的重要工具,它通过真正率(TPR)和假正率(FPR)展示了模型在不同阈值下的表现。AUC作为ROC曲线下的面积,值越大表明模型分类能力越强。本文介绍了ROC曲线的概念、计算方法以及AUC的含义,强调了AUC在处理不平衡数据集时的优势,并讨论了过拟合、交叉验证等模型评估与优化方法。
摘要由CSDN通过智能技术生成
  1. ROC曲线

 接收器操作特性曲线(receiver operating characteristic curve),曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。

  • 概念定义:

真正(TruePositive , TP)被模型预测为正的正样本;

假负(FalseNegative , FN)被模型预测为负的正样本;

假正(FalsePositive , FP)被模型预测为正的负样本;

真负(TrueNegative , TN)被模型预测为负的负样本。

真正率(True Positive Rate ,TPR)或灵敏度(sensitivity)

TPR = TP /(TP + FN)  (正样本预测结果数 / 正样本实际数)

假负率(False Negative Rate , FNR)

FNR = FN /(TP + FN) (被预测为负的正样本结果数 / 正样本实际数 )

假正率(False Positive Rate ,FPR)

FPR = FP /(FP + TN) (被预测为正的负样本结果数 /负样本实际数)

真负率(True Negative Rate , TNR)或特指度(specificity)

TNR = TN /(TN + FP) (负样本预测结果数 / 负样本实际数)

目标属性的被选中的那个期望值称作是“正”(positive)

 

横轴正率FPR)特异度 Specificity

代表分类器预测的正中实际负例占所有比。 1-Specificity

纵轴:真正率TP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值