SDUT 1269 走迷宫(DFS)

走迷宫

Time Limit: 1000 ms Memory Limit: 65536 KiB

Submit Statistic

Problem Description

有一个m*n格的迷宫(表示有m行、n列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,输入这m*n个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用-1表示无路)。

Input

第一行是两个数m,n(1< m, n< 15),接下来是m行n列由1和0组成的数据,最后两行是起始点和结束点。

Output

所有可行的路径,输出时按照左上右下的顺序。描述一个点时用(x,y)的形式,除开始点外,其他的都要用“->”表示。如果没有一条可行的路则输出-1。

Sample Input

5 4
1 1 0 0
1 1 1 1
0 1 1 0
1 1 0 1
1 1 1 1
1 1
5 4

Sample Output

(1,1)->(1,2)->(2,2)->(2,3)->(3,3)->(3,2)->(4,2)->(4,1)->(5,1)->(5,2)->(5,3)->(5,4)
(1,1)->(1,2)->(2,2)->(2,3)->(3,3)->(3,2)->(4,2)->(5,2)->(5,3)->(5,4)
(1,1)->(1,2)->(2,2)->(3,2)->(4,2)->(4,1)->(5,1)->(5,2)->(5,3)->(5,4)
(1,1)->(1,2)->(2,2)->(3,2)->(4,2)->(5,2)->(5,3)->(5,4)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,2)->(4,2)->(4,1)->(5,1)->(5,2)->(5,3)->(5,4)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,2)->(4,2)->(5,2)->(5,3)->(5,4)
(1,1)->(2,1)->(2,2)->(3,2)->(4,2)->(4,1)->(5,1)->(5,2)->(5,3)->(5,4)
(1,1)->(2,1)->(2,2)->(3,2)->(4,2)->(5,2)->(5,3)->(5,4)

Hint

Source

#include <bits/stdc++.h>
using namespace std;
int gra[16][16], vis[16][16];
int X[400], Y[400];          // 记录每一次点的坐标
int dirx[] = {0, -1, 0, 1};  // 方向数组
int diry[] = {-1, 0, 1, 0};
int step, flag;
int startx, endx;
int starty, endy;
int n, m;
void print() {
    for (int i = 0; i < step; i++) {
        if (i == step - 1)
            printf("(%d,%d)\n", X[i], Y[i]);
        else
            printf("(%d,%d)->", X[i], Y[i]);
    }
}
void dfs(int x, int y) {
    vis[x][y] = 1;
    if (x < 1 || y < 1 || x > n || y > m) {
        return;
    }
    if (x == endx && y == endy) {
        flag = 1;
        print();
        return;
    }
    for (int i = 0; i < 4; i++) {
        int a = x + dirx[i];
        int b = y + diry[i];
        if (!vis[a][b] && gra[a][b]) {
            X[step] = a;
            Y[step] = b;
            step++;
            dfs(a, b);
            vis[a][b] = 0;  // 回塑 取消标记
            step--;
        }
    }
}
int main() {
    int num;

    cin >> n >> m;
    memset(gra, 0, sizeof(gra));
    memset(vis, 0, sizeof(vis));
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            cin >> num;
            gra[i][j] = num;
        }
    }
    step = 0;
    flag = 0;
    cin >> startx >> starty;
    cin >> endx >> endy;
    // 起点初始化
    X[0] = startx;
    Y[0] = starty;
    step++;
    dfs(startx, starty);

    if (!flag) cout << -1 << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值