Description
Solution
颓式。
∑ j = 1 n gcd ( i , j ) c × lcm ( i , j ) d × x j ≡ b i ( m o d p ) i d j d ∑ j = 1 n gcd ( i , j ) c − d x j ≡ b i ( m o d p ) ∑ j = 1 n ( ∑ d ∣ i , d ∣ j f d ) x j ≡ b i ′ ( m o d p ) ∑ d ∣ i f d ∑ d ∣ j x j ≡ b i ′ ( m o d p ) ∑ d ∣ i f d F ( d ) ≡ b i ′ ∑ d ∣ i G ( d ) ≡ b i ′ \sum_{j=1}^n \gcd(i,j)^c \times \text{lcm}(i,j)^d \times x_j \equiv b_i \pmod p \\ i^d j^d\sum_{j=1}^n \gcd(i,j)^{c-d} x_j \equiv b_i \pmod p \\ \sum_{j=1}^n \left(\sum_{d|i,d|j} f_d\right) x_j \equiv b'_i \pmod p \\ \sum_{d|i} f_d \sum_{d|j} x_j \equiv b'_i \pmod p \\ \sum_{d|i} f_d F(d) \equiv b_i' \\ \sum_{d|i} G(d) \equiv b'_i j=1∑ngcd(i,j)c×lcm(i,j)d×xj≡bi(modp)idjdj=1∑ngcd(i,j)c−dxj≡bi(modp)j=1∑n⎝⎛d∣i,d∣j∑fd⎠⎞xj≡bi′(modp)d∣i∑fdd∣j∑xj≡bi′(modp)d∣i∑fdF(d)≡bi′d∣i∑G(d)≡bi′
其中
x c − d = ∑ i ∣ x f i F ( d ) = ∑ d ∣ j x j G ( d ) = f d F ( d ) x^{c-d}=\sum_{i|x} f_i \\ F(d)=\sum_{d|j} x_j \\ G(d)=f_d F(d) xc−d=i∣x∑fiF(d)=d∣j∑xjG(d)=fdF(d)
通过一次反演得到 G G G,再通过一次反演得到 F F F,再反演得到 x x x,然后就做完了。总复杂度 O ( q n ln n ) O(qn \ln n) O(qnlnn)。
三次反演太离谱了,这题太神仙了 ⋯ ⋯ \cdots \cdots ⋯⋯ 神 yzh 曰: “看完题解之后你觉得都懂了,连起来看就觉得这题好奇怪啊。”
Code
十分好写,就不放了。