题意:给定一个长度为n的序列,A和B两人分别给定一些按递增顺序排列的区间,区间个数分别为x和y,问被A和B同时给定的区间中长度为m的子区间个数。
分析:
1、1 ≤ n ≤ 109,而1 ≤x, y ≤ 100,显然应该枚举区间。
2、具体操作为:
(1)id1和id2分别指向A和B的第一个区间,若两区间相交,则求相交区间中长度为m的子区间个数。
(2)若A指向的区间右边界<=B指向的区间右边界,则id1++,将A的下一个区间与B的该区间比较,依此类推。
3、求两区间的相交区间:分别取两区间左边界的最大值和右边界的最小值即可。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, -1, 0, 1, 0, -1, -1, 1, 1};
const int dc[] = {0, 0, 1, 0, -1, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 100 + 10;
const int MAXT = 10000 + 10;
using namespace std;
struct Node{
int l, r;
void read(){
scanf("%d%d", &l, &r);
}
}a[MAXN], b[MAXN];
int main(){
int T;
scanf("%d", &T);
while(T--){
int n, m, x, y;
scanf("%d%d%d%d", &n, &m, &x, &y);
for(int i = 0; i < x; ++i){
a[i].read();
}
for(int i = 0; i < y; ++i){
b[i].read();
}
int id1 = 0, id2 = 0, ans = 0;
while(id1 < x && id2 < y){
int ll = max(a[id1].l, b[id2].l);
int rr = min(a[id1].r, b[id2].r);
if(rr - ll + 1 >= m){
ans += rr - ll - m + 2;
}
if(a[id1].r <= b[id2].r){
++id1;
}
else{
++id2;
}
}
printf("%d\n", ans);
}
return 0;
}