题目:
著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的N个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定N = 5, 排列是1、3、2、4、5。则:
- 1的左边没有元素,右边的元素都比它大,所以它可能是主元;
- 尽管3的左边元素都比它小,但是它右边的2它小,所以它不能是主元;
- 尽管2的右边元素都比它大,但其左边的3比它大,所以它不能是主元;
- 类似原因,4和5都可能是主元。
因此,有3个元素可能是主元。
输入格式:
输入在第1行中给出一个正整数N(<= 105); 第2行是空格分隔的N个不同的正整数,每个数不超过109。
输出格式:
在第1行中输出有可能是主元的元素个数;在第2行中按递增顺序输出这些元素,其间以1个空格分隔,行末不得有多余空格。
输入样例:5 1 3 2 4 5
输出样例:3 1 4 5
思路:如果当前数是从第一个数到当前数最大的一个,且与排完顺序对应位置的数相同则该数就有可能是主元。
我参考了这个解答的思路写的:http://blog.csdn.net/gq_bob/article/details/49520161,但是一直无法全部通过,不知道为什么。我试了用<iostream>和<cstdio>两种格式,也尝试按原文在定义数组时把a[100005]换成a[n],发现错误相同。
#include<iostream> #include<algorithm> #include<cstdio> using namespace std; int main() { int n, i, a[100005], b[100005], c[100005], max1=0, num=0; //cin>>n; scanf ("%d", &n); for (i=0; i<n; i++) { scanf ("%d", &a[i]); //cin>>a[i]; b[i] = a[i]; } sort (b, b+n); for (i=0; i<n; i++) { if (a[i] > max1) max1 = a[i]; if (a[i] == max1 && a[i] == b[i]) { c[num] = a[i]; num++; } } printf ("%d\n", num); //cout<<num<<endl; sort (c, c+num); for (i=0; i<num-1; i++) printf ("%d ", c[i]); //cout<<c[i]<<" "; printf ("%d", c[num-1]); //cout<<c[num-1]; return 0; }