VGG16理解

网络上能找到很多VGG的六种网络结构图,这六种结构分为A,A-LRN,B,C,D,E六种,D,E两种结构是常用的,这里使用了Rogn的图:
在这里插入图片描述
Rogn用绿色的部分指明了VGG16采用的结构,从这张图能看到,D中有5个卷积块,总共13层卷积层,最后接了3层全连接层,通过下图可以直观看到VGG16的网络结构:
在这里插入图片描述在上图中,红色为最大池化层,黑色为卷积层+ReLU层,蓝色为全连接层和ReLU层,棕色为softmax层,根据类别得分,对图片进行分类。
刚才提到,有5个卷积块,可以看到,每一个卷积块后都接着一个最大池化层,最大池化层的作用是缩小图片的尺寸。

  1. 输入的图像是224 * 224 * 3,即通道数为3
  2. block1:输入图像后,接上2个卷积层,每个卷积层64个卷积核,通道数为64
  3. 最大池化层:将特征图尺寸缩小到112,通道数翻一倍,变为128
  4. block2:包含2个卷积层,每个卷积层128个卷积核,128个通道
  5. block3:包含3个卷积层,每个卷积层256个卷积核,256个通道
  6. block4:包含3个卷积层,每个卷积层512个通道
  7. block5:包含3个卷积层,每个卷积层512个通道
  8. fc1:第一个全连接层,设置4096个神经元
  9. fc2:设置4096个神经元
  10. fc3:1000个神经元
    总体上,通道数不断增加,图像尺寸不断减小。
VGG16是一种经典的深度卷积神经网络模型,由16层卷积层和3层全连接层组成。它的原理可以简单理解为通过多层卷积和池化操作对输入图像进行特征提取,然后通过全连接层进行分类。 具体来说,VGG16的卷积层由多个卷积核组成,每个卷积核都会对输入图像进行卷积操作,提取不同的特征。每层卷积层都会有多个卷积核,并且每个卷积核都有自己的权重,用于计算输出特征图。 在卷积操作之后,VGG16会进行池化操作。池化层的作用是对卷积层的输出特征图进行降维,减少计算量,并保留重要的特征。池化操作通常是在局部区域内取最大值或平均值,从而生成新的特征图。在VGG16中,池化操作是以2x2的窗口进行的,步长为2,并且没有使用Padding。 总结起来,VGG16的原理就是通过多层卷积和池化操作提取图像的特征,然后通过全连接层对这些特征进行分类。这种深度卷积神经网络模型在图像分类任务中取得了很好的效果。如果想深入了解VGG16的细节,可以参考之前的文章。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [VGG16工作原理](https://blog.csdn.net/amcle/article/details/79165348)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [pytorch实战7:手把手教你基于pytorch实现VGG16](https://blog.csdn.net/weixin_46676835/article/details/129582927)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值