混沌的有关概念——2

混沌(chaos)

虽然60年代人们就开始注意混沌现象了,但直到1978年菲金堡姆(Feigenbaum)从计算机实验中发现一些简单的单变量非线性映象的分岔点结构具有若干普遍规律,出现一些普适常数以后,混沌才引起了大家的极大兴趣。

几年之中,连篇累牍的论文,令人目眩的应用,众多的专著,形成新的巨大的浪潮滚滚而来。“春色弥漫溢天地”,混沌迅速冲进了科学的各个领域,如纯数学、时空理论、湍流、浅水波的强迫振动、非线性振荡电路、量子力学、光学、声学、等离子体物理、超导理论、位错理论、非线性振动、相变理论、微波理论、固体物理、统计物理、天文学、广义相对论、地磁场理论、化学、气象学、工程模型、协同学、生态学、群体动力学、生命科学、生物学、医学(如心脏跳动、脑电波及非线性药物代谢动力学、生理和病理现象的自动调节模型等)经济学、社会学、战争论等等。它形成雪崩式的应用,出现了“条条道路通混沌”的趋势。

当一个非线性动力学系统远离平衡时就可能出现混沌态,这是一种非常普遍的非线性现象。各种非线性方程、非线性映射,如xn+1=1-ax2n,在一定的参数a范围内,当a不断改变时,不动点逐渐跃变,分岔现象不断出现,周期点增多,以后an的间隔越来越小,最后在a∞处出现无穷多点周期,并转入混乱状态。混沌具有很强的普遍性。它出现于代数方程、一维和高维的差分方程、自洽和非自洽的常微分方程、偏微分方程、微分积分方程和泛函方程中。

非线性迭代无穷进行下去时,得到普适的菲金堡姆泛函方程

其中N表示选代N次。混沌具有一些普适性很好的常数:分岔序列的收敛速率





标度变换因子(自相似系数)α,分岔点附近的慢化指数等。g(x)的形式与迭代函数f的具体形式无关,只依赖于函数的一些普遍性质。

混沌显示的普适性表明,一方面在不同的非线性映射中出现同样的分岔结构和定量特征,另一方面对于同一映射它们适用于不同层次的内嵌结构。

混沌状态出现时运动轨道不稳定,它们随机地但密致地逐渐汇集于一个整体日益减小但局部指数分离的区域。这就是奇异吸引子(strange attractor)。它不同于一般稳定的不动点(整数维吸引子),具有奇特的非整数的空间维数,这种空间是豪斯道夫(Hausdorff)空间。因此,这是一种多层次的整体稳定,局部不稳定的运动状态,形成无穷嵌套的自相似结构。而且各种奇异吸引子具有某种共同的特点,即所谓标度不变性(标度律)。这就是把标尺作适当地收缩后,形象地说即用放大镜放大若干倍后,吸引子的细节部分与整体具有同样的结构。这是与内在随机性密切相关的几何性质。

普适性和标度律把我们引到了在量子场论和相变理论中被成功应用的重正化群方法。事实上,菲金堡姆的泛函方程就是决定倍周期分岔普适性质的重正化群方程。混沌必须远离平衡,这又与非平衡态统计、耗散结构发生联系。物理系统在远离平衡时即可能突变为更有序和对称的状态,也可能突变进入混沌状态,且普利高津等还进一步认为有序来自混沌。

人们先研究的是倍周期分岔现象,以后郝柏林、彭守礼等又研究了三周期等高次分岔现象。目前不仅在若干实验中观察到了此类现象,而且在理论方面也取得了一系列进展。

“等闲识得东风面,万紫千红总是春”。菲金堡姆的工作出人意料地发现了混沌现象的普适性,从而迎来了桃红柳绿的初春。但混沌的各种定义和理论还在变比、发展,繁花似锦,姹紫嫣红的大好春光才刚刚开始呢。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值